In this paper we show that two dynamical invariants, the second order Rényi entropy and the correlation dimension, can be estimated from recurrence plots (RPs) with arbitrary embedding dimension and delay. This fact is interesting as these quantities are even invariant if no embedding is used. This is an important advantage of RPs compared to other techniques of nonlinear data analysis. These estimates for the correlation dimension and entropy are robust and, moreover, can be obtained at a low numerical cost. We exemplify our results for the Rössler system, the funnel attractor and the Mackey–Glass system. In the last part of the paper we estimate dynamical invariants for data from some fluid dynamical experiments and confirm previous evidence for low dimensional chaos in this experimental system.

1.
J.-P.
Eckmann
,
S.O.
Kamphorst
, and
D.
Ruelle
,
Europhys. Lett.
4
,
973
(
1987
).
2.
J.P.
Zbilut
and
C.L.
Webber
,
Phys. Lett. A
171
,
199
(
1992
).
3.
C.L.
Webber
and
J.P.
Zbilut
,
J. Appl. Physiol.
76
,
965
(
1994
).
4.
N.
Thomasson
,
C.L.
Webber
, and
J.P.
Zbilut
,
Int. J. Comp. Appl.
9
,
1
(
2002
).
5.
J.P.
Zbilut
,
N.
Thomasson
, and
C.L.
Webber
,
Med. Eng. Phys.
24
,
53
(
2002
).
6.
J.
Kurths
,
U.
Schwarz
,
C.P.
Sonett
, and
U.
Parlitz
,
Nonlinear Processes in Geophysics
1
,
72
(
1994
).
7.
N.
Marwan
,
M.
Thiel
, and
N.R.
Nowaczyk
,
Nonlinear Processes in Geophysics
9
,
325
(
2002
).
8.
N.
Marwan
and
J.
Kurths
,
Phys. Lett. A
302
,
299
(
2002
).
9.
M. Thiel, M.C. Romano, and J. Kurths, Jzv. VUZov—Applied Nonlinear Dynamics (in press).
10.
P.
Faure
and
H.
Korn
,
Physica D
122
,
265
(
1998
).
11.
M.
Thiel
,
M.C.
Romano
,
J.
Kurths
,
R.
Meucci
,
E.
Allaria
, and
T.
Arecchi
,
Physica D
171
,
138
(
2002
).
12.
F. Takens, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, edited by D.A. Rand and L.-S. Young (Springer, Berlin, 1980), Vol. 898.
13.
M.B.
Kennel
,
R.
Brown
, and
H.D.I.
Abarbanel
,
Phys. Rev. A
45
,
3403
(
1992
).
14.
D.
Broomhead
and
K.
King
,
Physica D
20
,
217
(
1986
).
15.
P.
Grassberger
,
T.
Schreiber
, and
C.
Schaffrath
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
521
(
1991
).
16.
R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, New York, 2002).
17.
P.
Grassberger
and
I.
Procaccia
,
Physica D
9
,
189
(
1983
).
18.
A. Rényi, Probability Theory (North–Holland, Amsterdam, 1970), Appendix.
19.
P.
Grassberger
,
Phys. Lett.
97A
,
227
(
1983
).
20.
P.
Grassberger
and
I.
Procaccia
,
Physica D
13
,
34
(
1984
).
21.
P.
Grassberger
and
I.
Procaccia
,
Phys. Rev. A
28
,
2591
(
1983
).
22.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
23.
J.C.
Sprott
and
G.
Rowlands
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
1865
(
2001
).
24.
O.
Rössler
,
Phys. Lett.
57A
,
397
(
1976
).
25.
J.D.
Farmer
,
Physica D
4
,
366
(
1982
).
26.
C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1993).
27.
M.C.
Mackey
and
L.
Glass
,
Science
197
,
287
(
1977
).
28.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
,
Chaos
9
,
413
(
1999
).
29.
P.L.
Read
,
M.J.
Bell
,
D.
Johnson
, and
R.M.
Small
,
J. Fluid Mech.
238
,
599
(
1992
).
30.
J.
Theiler
,
Phys. Rev. A
34
,
2427
(
1986
).
31.
J.
Kurths
and
H.
Herzel
,
Physica D
25
,
165
(
1987
).
32.
J.
Ivanski
and
E.
Bradley
,
Chaos
8
,
861
(
1998
).
33.
J.
Gao
and
H.
Cai
,
Phys. Lett. A
270
,
75
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.