A rigorous mathematical treatment of chaotic phase synchronization is still lacking, although it has been observed in many numerical and experimental studies. In this article we address the extension of results on phase synchronization in periodic oscillators to systems with phase coherent chaotic attractors with small phase diffusion. As models of such systems we consider special flows over diffeomorphisms in which the neutral direction is periodically perturbed. A generalization of the Averaging Theorem for periodic systems is used to extend Kuramoto’s geometric theory of phase locking in periodically forced limit cycle oscillators to this class of systems. This approach results in reduced equations describing the dynamics of the phase difference between drive and response systems over long time intervals. The reduced equations are used to illustrate how the structure of a chaotic attractor is important in its response to a periodic perturbation, and to conclude that chaotic phase coherent systems may not always be treated as noisy periodic oscillators in this context. Although this approach is strictly justified for periodic perturbations affecting only the phase variable of a chaotic oscillator, we argue that these ideas are applicable much more generally.

1.
C. Huygens, Horologivm Oscillatorivm (F. Muguet, Paris, 1673).
2.
A.
Pikovsky
, “
Phase synchronization of chaotic oscillations by a periodic external fields
,”
Sov. J. Commun. Technol. Electron.
30
,
85
90
(
1985
).
3.
E.
Stone
, “
Frequency entrainment of a phase coherent attractor
,”
Phys. Lett. A
163
,
47
50
(
1992
).
4.
A.
Pikovsky
,
M.
Rosenblum
,
G.
Osipov
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators by external driving
,”
Physica D
104
,
219
238
(
1997
).
5.
R. C.
Elson
,
A. I.
Selverston
,
R.
Huerta
,
N. F.
Rulkov
,
M. I.
Rabinovich
, and
H. D. I.
Abarbanel
, “
Synchronous behavior of two coupled biological neurons
,”
Phys. Rev. Lett.
81
,
5692
5695
(
1998
).
6.
V.
Makarenko
and
R.
Llinás
, “
Experimentally determined chaotic phase synchronization in a neuronal system
,”
Proc. Natl. Acad. Sci. U.S.A.
95
,
15474
15752
(
1998
).
7.
S. J.
Schiff
,
K.
Jerger
,
D. H.
Duong
,
T.
Chang
,
M. L.
Spano
, and
W. L.
Ditto
, “
Controlling chaos in the brain
,”
Nature (London)
370
,
615
620
(
1994
).
8.
M. de Sousa Vieira (private communication).
9.
E.
Rosa
,
W.
Pardo
,
C. M.
Ticos
,
J. A.
Walkenstein
, and
M.
Monti
, “
Phase synchronization of chaos in a plasma discharge tube
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
2551
2563
(
2000
).
10.
R. L. Stratonovich, Topics in the Theory of Random Noise. Vol. II (Gordon and Breach, New York, 1963).
11.
A.
Pikovsky
,
M.
Zaks
,
M.
Rosenblum
,
G.
Osipov
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillations in terms of periodic orbits
,”
Chaos
7
,
680
687
(
1997
).
12.
B. R.
Hunt
,
E.
Ott
, and
E.
Rosa
, Jr.
, “
Sporadically fractal basin boundaries of chaotic systems
,”
Phys. Rev. Lett.
82
,
3597
3600
(
1999
).
13.
E.
Rosa
,
E.
Ott
, and
M. H.
Hess
, “
Transition to phase synchronization of chaos
,”
Phys. Rev. Lett.
80
,
1642
1645
(
1998
).
14.
A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, Berlin, 1980).
15.
G. B.
Ermentrout
and
N.
Kopell
, “
Oscillator death in systems of coupled neural oscillators
,”
SIAM J. Appl. Math.
50
,
125
146
(
1990
).
16.
L. Glass and M. C. Mackey, From Clocks to Chaos (Princeton University Press, Princeton, NJ, 1988).
17.
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984).
18.
D.
Farmer
, “
Spectral broadening of period-doubling bifurcation sequences
,”
Phys. Rev. Lett.
47
,
179
182
(
1981
).
19.
K.
Josić
and
D. J.
Mar
, “
Phase synchronization of chaotic systems with small phase diffusion
,”
Phys. Rev. E
64
,
056234
(
2001
).
20.
I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic Theory (Springer-Verlag, New York, 1982) (translated from Russian by A. B. Sosinskiĭ).
21.
Strictly speaking we are considering the lift of φ to the line.
22.
C. Liverani, “Central limit theorem for deterministic systems,” in International Conference on Dynamical Systems, Montevideo, 1995 (Longman, Harlow, 1996), pp. 56–75.
23.
M. Viana, Stochastic Dynamics of Deterministic Systems, Lecture Notes XXI Braz. Math. Colloq. IMPA, Rio de Janeiro, 1997.
24.
L.-S.
Young
, “
Developments in chaotic dynamics
,”
Not. Am. Math. Soc.
45
,
1318
1328
(
1998
).
25.
K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, Philadelphia, 1982).
26.
R. E. Best, Phase-Locked Loops (McGraw-Hill, New York, 1984).
27.
J. Y.
Chen
,
K. W.
Wong
,
H. Y.
Zheng
, and
J. W.
Shuai
, “
Phase signal coupling induced n:m phase synchronization in drive-response oscillators
,”
Phys. Rev. E
63
,
036214
(
2001
).
28.
Y.
Kifer
, “
Averaging in dynamical systems and large deviations
,”
Invent. Math.
110
,
337
370
(
1992
).
29.
Y.
Kifer
, “
Limit theorems in averaging for dynamical systems
,”
Ergod. Theory Dyn. Syst.
15
,
1143
1172
(
1995
).
30.
J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems (Springer-Verlag, New York, 1985).
31.
An example of such a system can be found at http://math.bu.edu/people/josic/research/research.html.
32.
Y. Kifer, “Averaging in difference equations driven by dynamical systems,” preprint, 2001.
33.
K. Josić and M. Palma, “Phase response curves for phase coherent chaotic attractors,” unpublished, 2000.
34.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).
This content is only available via PDF.
You do not currently have access to this content.