The large number of unstable equilibrium modes embedded in the strange attractor of dissipative chaotic systems usually presents a sufficiently rich repertoire for the choice of the desirable motion as a target. Once the system is close enough to the chosen target local stabilization techniques can be employed to capture the system within the desired motion. The ergodic behavior of chaotic systems on their strange attractors guarantees that the system will eventually visit a close neighborhood of the target. However, for arbitrary initial conditions within the basin of attraction of the strange attractor the waiting time for such a visit may be intolerably long. In order to reduce the long waiting time it usually becomes indispensable to employ an appropriate method of targeting, which refers to the task of steering the system toward the close neighborhood of the target. This paper provides a survey of targeting methods proposed in the literature for dissipative chaotic systems.

1.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. Lett.
64
,
1196
(
1990
).
2.
T.
Shinbrot
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. Lett.
65
,
3215
(
1990
).
3.
T.
Shinbrot
,
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. A
45
,
4165
(
1992
).
4.
T.
Shinbrot
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Lett. A
169
,
349
(
1992
).
5.
T.
Shinbrot
,
W.
Ditto
,
C.
Grebogi
,
E.
Ott
,
M.
Spano
, and
J. A.
Yorke
,
Phys. Rev. Lett.
68
,
2863
(
1992
).
6.
E. J.
Kostelich
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Rev. E
47
,
305
(
1993
).
7.
I. M.
Starobinets
and
A. S.
Pikovsky
,
Phys. Lett. A
181
,
149
(
1993
).
8.
E.
Barreto
,
E.
Kostelich
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Rev. E
51
,
4169
(
1995
).
9.
K.
Glass
,
M.
Renton
,
K.
Judd
, and
A.
Mees
,
Phys. Lett. A
203
,
107
(
1995
).
10.
M.
Paskota
,
A. I.
Mees
, and
K. L.
Teo
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
573
(
1995
).
11.
M.
Paskota
,
A. I.
Mees
, and
K. L.
Teo
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
1167
(
1995
).
12.
M.
Paskota
,
A. I.
Mees
, and
K. L.
Teo
,
Dyn. Control
7
,
25
(
1997
).
13.
H. W. J.
Lee
,
M.
Paskota
, and
K. L.
Teo
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
607
(
1997
).
14.
M.
Paskota
and
H. W. J.
Lee
,
Chaos, Solitons Fractals
8
,
1533
(
1997
).
15.
L.
Cao
,
K.
Judd
, and
A.
Mees
,
Phys. Lett. A
231
,
367
(
1997
).
16.
H. D. I.
Abarbanel
,
L.
Korzinov
,
A. I.
Mees
, and
I. M.
Starobinets
,
Syst. Control Lett.
31
,
263
(
1997
).
17.
S.
Boccaletti
,
A.
Farini
,
E. J.
Kostelich
, and
F. T.
Arecchi
,
Phys. Rev. E
55
,
R4845
(
1997
).
18.
P. J.
Aston
and
C. M.
Bird
,
Chaos, Solitons Fractals
8
,
1413
(
1997
).
19.
C. M.
Bird
and
P. J.
Aston
,
Chaos, Solitons Fractals
9
,
251
(
1998
).
20.
E. M.
Bollt
and
E. J.
Kostelich
,
Phys. Lett. A
245
,
399
(
1998
).
21.
E. E. N.
Macau
and
C.
Grebogi
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
1423
(
2001
).
22.
M.
Baptista
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
1575
(
1998
).
23.
S.
Gadaleta
and
G.
Dalgenmayr
,
Chaos
9
,
775
(
1999
).
24.
S.
Iplikci
and
Y.
Denizhan
,
AIP Conf. Proc.
517
,
453
(
1999
).
25.
S.
Iplikci
and
Y.
Denizhan
,
Physica D
150
,
163
(
2001
).
26.
S. Iplikci and Y. Denizhan, Phys. Lett. (submitted).
27.
A. Tsonis, Chaos: From Theory to Applications (Plenum, New York, 1992).
28.
H. D. I.
Abarbanel
,
R.
Brown
,
J. J.
Sidorowich
, and
L. S.
Tsimring
,
Rev. Mod. Phys.
65
,
1331
(
1993
).
29.
T.
Sauer
and
J. A.
Yorke
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
3
,
737
(
1993
).
30.
M.
Paskota
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
6
,
169
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.