In mechanical treatment carried out by ball milling, powder particles are subjected to repeated high-energy mechanical loads which induce heavy plastic deformations together with fracturing and cold-welding events. Owing to the continuous defect accumulation and interface renewal, both structural and chemical transformations occur. The nature and the rate of such transformations have been shown to depend on variables, such as impact velocity and collision frequency that depend, in turn, on the whole dynamics of the system. The characterization of the ball dynamics under different impact conditions is then to be considered a necessary step in order to gain a satisfactory control of the experimental set up. In this paper we investigate the motion of a ball in a milling device. Since the ball motion is governed by impulsive forces acting during each collision, no analytical expression for the complete ball trajectory can be obtained. In addition, mechanical systems exhibiting impacts are strongly nonlinear due to sudden changes of velocities at the instant of impact. Many different types of periodic and chaotic impact motions exist indeed even for simple systems with external periodic excitation forces. We present results of the analysis on the ball trajectory, obtained from a suitable numerical model, under growing degree of impact elasticity. A route to high dimensional chaos is obtained. Crisis and attractors merging are also found.

1.
Theofrasto di Ereso (IV sec B.C.) De Lapidibus.
2.
Anonymous (about 300 B.C.) De Natura Fossilicum.
3.
W. Ostwald, Handbuch Chemie, I (Engleman, Leipzig, 1919), p. 70.
4.
J. S.
Benjamin
and
T.
Volin
,
Metall. Trans.
5
,
1929
(
1974
).
5.
B. B.
Khina
and
F. H.
Froes
,
J. Metals
48
,
36
(
1996
).
6.
P. H.
Shingu
,
K. N.
Ishihara
, and
A.
Otsuki
,
Mater. Sci. Forum
179-181
,
5
(
1995
).
7.
C.
Caravati
,
F.
Delogu
,
G.
Cocco
, and
M.
Rustici
,
Chaos
9
,
219
(
2000
).
8.
F. Delogu, “Solid phase reactivity under mechanical processing condiction. Structural evolution and trasformation kinetics,” Ph.D. thesis, Universitá degli studi di Sassari, 1999.
9.
C.
Suryanarayana
,
Prog. Mater. Sci.
46
,
1
(
2001
).
10.
T. H.
Courtney
,
Mater. Trans., JIM
36
,
110
(
1995
).
11.
A. Y.
Yermakov
,
Y. Y.
Yurchikov
, and
V. A.
Barinov
,
Phys. Met. Metallogr.
52
,
50
(
1981
).
12.
C. C.
Koch
,
O. B.
Cavin
,
C. G.
McKamey
, and
J. O.
Scarbrough
,
Appl. Phys. Lett.
43
,
1017
(
1983
).
13.
A. W.
Weeber
and
H.
Bakker
,
Physica B
153
,
93
(
1988
).
14.
G. Heinicke, Tribochemistry (Akademie-Verlag, Berlin, 1984), Chap. 5.
15.
Y.
Chen
,
M.
Bibole
,
R.
Le Hazif
, and
G.
Martin
,
Phys. Rev. B
48
,
14
(
1993
).
16.
H.
Huang
,
M. P.
Dallimore
,
J.
Pan
, and
P. G.
McCormick
,
Mater. Sci. Eng., A
241
,
38
(
1998
).
17.
Proceedings of the 1997 International Symposium on Mechanical Alloyed, Metastable and Nanocrystalline Materials, ISMANAM.
18.
F.
Delogu
,
M.
Monagheddu
,
G.
Mulas
,
L.
Schiffini
, and
G.
Cocco
,
Int. J. Non-Equilib. Process.
11
,
235
(
2000
).
19.
F.
Delogu
,
L.
Schiffini
, and
G.
Cocco
,
Philos. Mag. A
81
(
8
),
1917
(
2001
).
20.
F.
Delogu
,
L.
Schiffini
, and
G.
Cocco
,
Mater. Sci. Forum
360-362
,
337
(
2001
).
21.
M.
Rustici
,
G.
Mulas
, and
G.
Cocco
,
Mater. Sci. Forum
225-227
,
243
(
1996
).
22.
F. Delogu and G. Cocco, submitted.
23.
M. P. Allen and D. J. Tildsley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987).
24.
E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Dover, New York, 1944), pp. 193–200.
25.
S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), pp. 409–422.
26.
G. Manai, “Non linearità e caos nella dinamica di un gas granulare. Propagazione di reazioni combustive durante l’attivazione meccanochimica,” Tesi di Laurea in Chimica, Universitá degli studi di Sassari, 2000–2001.
27.
H. Kantz and T. Schreiber, in Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).
28.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993).
29.
D. S.
Broomhead
and
G. P.
King
,
Physica D
20
,
217
(
1986
).
30.
H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer-Verlag, New York, 1996).
31.
H. D. I.
Abarbanel
,
R.
Brown
,
J. J.
Sidorowich
, and
L. S.
Tsimring
,
Rev. Mod. Phys.
65
,
1331
(
1993
).
32.
J. P.
Ekmann
and
D.
Ruelle
,
Rev. Mod. Phys.
57
,
617
(
1985
).
33.
F. Takens, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, edited by D. A. Rand and L. S. Young (Springer-Verlag, Berlin, 1981), Vol. 898, p. 366.
34.
A. M.
Fraser
and
H. L.
Swinney
,
Phys. Rev. A
33
,
1134
(
1986
).
35.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
,
Phys. Rev. A
45
,
3403
(
1992
).
36.
The TISEAN software package is publicly available at http://www.mpipks-dresden.mpg.de/∼tisean/TISEAN_2.1/index.html. The distribution includes an online documentation system.
37.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
,
Chaos
9
,
413
(
1999
).
38.
J. M.
Greene
and
J. S.
Kim
,
Physica D
24
,
213
(
1987
).
39.
J. P.
Ekmann
,
S. O.
Kamphorst
,
D.
Ruelle
, and
S.
Ciliberto
,
Phys. Rev. A
34
,
4971
(
1986
).
40.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
,
Physica D
16
,
285
(
1985
).
41.
M.
Sano
and
Y.
Sawada
,
Phys. Rev. Lett.
55
,
1082
(
1985
).
42.
P.
Bryant
and
R.
Brown
,
Phys. Rev. Lett.
65
,
1523
(
1990
).
43.
P.
Bryant
,
R.
Brown
, and
H. D. I.
Abarbanel
,
Phys. Rev. A
43
,
2787
(
1991
).
44.
M. J.
Feigenbaum
,
J. Stat. Phys.
19
,
25
(
1978
).
45.
Y. S.
Fan
and
T. R.
Chay
,
Phys. Rev. E
51
,
1012
(
1995
).
46.
C.
Grebogi
,
E.
Ott
,
F.
Romeiras
, and
J. A.
Yorke
,
Phys. Rev. A
36
,
5365
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.