A recurrence plot is a two-dimensional visualization technique for sequential data. These plots are useful in that they bring out correlations at all scales in a manner that is obvious to the human eye, but their rich geometric structure can make them hard to interpret. In this paper, we suggest that the unstable periodic orbits embedded in a chaotic attractor are a useful basis set for the geometry of a recurrence plot of those data. This provides not only a simple way to locate unstable periodic orbits in chaotic time-series data, but also a potentially effective way to use a recurrence plot to identify a dynamical system.

1.
http://home.netcom.com/∼eugenek/download.html
2.
http://www.cs.colorado.edu/∼lizb/rps.html
3.
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanovic
, “
Recycling of strange sets: I. Cycle expansions
,”
Nonlinearity
3
,
325
359
(
1990
).
4.
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanovic
, “
Recycling of strange sets: II. Applications
,”
Nonlinearity
3
,
361
386
(
1990
).
5.
D.
Auerbach
,
P.
Cvitanovic
,
J.-P.
Eckmann
,
G.
Gunaratne
, and
I.
Procaccia
, “
Exploring chaotic motion through periodic orbits
,”
Phys. Rev. Lett.
58
,
2387
2389
(
1987
).
6.
R.
Balocchi
,
A.
DiGarbo
,
C.
Michelassi
,
S.
Chillemi
,
M.
Varanini
,
M.
Barbi
,
J.
Legramente
,
G.
Raimondi
, and
J.
Zbilut
, “
Heart rate and blood pressure response to short-term head-down bed rest: A nonlinear approach
,”
Methods Inf. Med.
39
,
157
159
(
2000
).
7.
O.
Biham
and
W.
Wenzel
, “
Characterization of unstable periodic orbits in chaotic attractors and repellers
,”
Phys. Rev. Lett.
63
,
819
822
(
1989
).
8.
J. C. Webber, “Rhythmogenesis of deterministic breathing patterns,” in Rhythms in Physiological Systems, edited by H. Haken and H. Koepchen (Springer-Verlag, Berlin, 1991).
9.
M.
Casdagli
, “
Recurrence plots revisited
,”
Physica D
108
,
12
44
(
1997
).
10.
F.
Christiansen
and
P.
Cvitanovic
, “
Periodic orbit quantization of the anisotropic Kepler problem
,”
Chaos
2
,
61
69
(
1992
).
11.
P.
Cvitanovic
, “
Invariant measurement of strange sets in terms of circles
,”
Phys. Rev. Lett.
61
,
2729
2732
(
1988
).
12.
J.-P.
Eckmann
,
S.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
13.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
656
(
1985
).
14.
J. H.
Friedman
,
J. L.
Bentley
, and
R. A.
Finkel
, “
An algorithm for finding best matches in logarithmic expected time
,”
ACM Trans. Math. Softw.
3
,
209
226
(
1977
).
15.
J.
Gao
and
H.
Cai
, “
On the structures and quantification of recurrence plots
,”
Phys. Lett. A
270
,
75
87
(
2000
).
16.
A.
Giuliani
,
R.
Benigni
,
P.
Sirabella
,
J.
Zbilut
, and
A.
Colosimo
, “
Exploiting the information content of protein sequences using time-series methods: A case study in rubredoxins
,”
Biophys. J.
78
,
136
149
(
1998
).
17.
J.
Guckenheimer
and
B.
Meloon
, “
Computing periodic orbits and their bifurcations with automatic differentiation
,”
SIAM J. Sci. Comput. (USA)
22
,
951
985
(
2000
).
18.
G. H.
Gunaratne
,
P. S.
Linsay
, and
M. J.
Vinson
, “
Chaos beyond onset: A comparison of theory and experiment
,”
Phys. Rev. Lett.
63
,
1
(
1989
).
19.
S.
Ikagawa
,
M.
Shinohara
,
T.
Fukunaga
,
J.
Zbilut
, and
C.
Webber
, “
Nonlinear time-course of lumbar muscle fatigue using recurrence quantifications
,”
Biol. Cybern.
82
,
373
382
(
2000
).
20.
J.
Iwanski
and
E.
Bradley
, “
Recurrence plots of experimental data: To embed or not to embed?
Chaos
8
,
861
871
(
1998
).
21.
P.
Kaluzny
and
R.
Tarnecki
, “
Recurrence plots of neuronal spike trains
,”
Biol. Cybern.
68
,
527
534
(
1993
).
22.
M. Koebbe and G. Mayer-Kress, “Use of recurrence plots in the analysis of time-series data,” in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank (Addison Wesley, New York, 1992).
23.
H. Löffelman, Ph.D. thesis, Vienna Technical University, November 1998. See also http://www.cg.tuwien.ac.at/∼helwig/diss/node42.htm
24.
G.
McGuire
,
N.
Azar
, and
M.
Shelhammer
, “
Recurrence matrices and the preservation of dynamical properties
,”
Phys. Lett. A
237
,
43
47
(
1997
).
25.
P.
So
,
J.
Francis
,
T.
Netoff
,
B.
Gluckman
, and
S.
Schiff
, “
Periodic orbits: A new language for neuronal dynamics
,”
Biophys. J.
74
,
2776
2785
(
1998
).
26.
P.
So
,
E.
Ott
,
T.
Sauer
,
B.
Gluckman
,
C.
Grebogi
, and
S.
Schiff
, “
Extracting unstable periodic orbits from chaotic time-series data
,”
Phys. Rev. E
55
,
5398
5417
(
1997
).
27.
P.
So
,
E.
Ott
,
S.
Schiff
,
D.
Kaplan
,
T.
Sauer
, and
C.
Grebogi
, “
Detecting unstable periodic orbits in chaotic experimental data
,”
Phys. Rev. Lett.
76
,
4705
4708
(
1996
).
28.
C.
Webber
,
M.
Schmidt
, and
J.
Walsh
, “
Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools
,”
J. Appl. Physiol.
78
,
814
822
(
1995
).
29.
C.
Webber
and
J.
Zbilut
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol.
76
,
965
973
(
1994
).
30.
J.
Zbilut
,
A.
Giuliani
, and
C.
Webber
, “
Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification
,”
Phys. Lett. A
246
,
122
128
(
1998
).
31.
J.
Zbilut
,
A.
Giuliani
, and
C.
Webber
, “
Recurrence quantification analysis and principal components in the detection of short complex signals
,”
Phys. Lett. A
237
,
131
135
(
1998
).
32.
J.
Zbilut
and
C.
Webber
, “
Embeddings and delays as derived from recurrence quantification analysis
,”
Phys. Lett. A
171
,
199
203
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.