A recurrence plot is a two-dimensional visualization technique for sequential data. These plots are useful in that they bring out correlations at all scales in a manner that is obvious to the human eye, but their rich geometric structure can make them hard to interpret. In this paper, we suggest that the unstable periodic orbits embedded in a chaotic attractor are a useful basis set for the geometry of a recurrence plot of those data. This provides not only a simple way to locate unstable periodic orbits in chaotic time-series data, but also a potentially effective way to use a recurrence plot to identify a dynamical system.
REFERENCES
1.
http://home.netcom.com/∼eugenek/download.html
2.
http://www.cs.colorado.edu/∼lizb/rps.html
3.
R.
Artuso
, E.
Aurell
, and P.
Cvitanovic
, “Recycling of strange sets: I. Cycle expansions
,” Nonlinearity
3
, 325
–359
(1990
).4.
R.
Artuso
, E.
Aurell
, and P.
Cvitanovic
, “Recycling of strange sets: II. Applications
,” Nonlinearity
3
, 361
–386
(1990
).5.
D.
Auerbach
, P.
Cvitanovic
, J.-P.
Eckmann
, G.
Gunaratne
, and I.
Procaccia
, “Exploring chaotic motion through periodic orbits
,” Phys. Rev. Lett.
58
, 2387
–2389
(1987
).6.
R.
Balocchi
, A.
DiGarbo
, C.
Michelassi
, S.
Chillemi
, M.
Varanini
, M.
Barbi
, J.
Legramente
, G.
Raimondi
, and J.
Zbilut
, “Heart rate and blood pressure response to short-term head-down bed rest: A nonlinear approach
,” Methods Inf. Med.
39
, 157
–159
(2000
).7.
O.
Biham
and W.
Wenzel
, “Characterization of unstable periodic orbits in chaotic attractors and repellers
,” Phys. Rev. Lett.
63
, 819
–822
(1989
).8.
J. C. Webber, “Rhythmogenesis of deterministic breathing patterns,” in Rhythms in Physiological Systems, edited by H. Haken and H. Koepchen (Springer-Verlag, Berlin, 1991).
9.
M.
Casdagli
, “Recurrence plots revisited
,” Physica D
108
, 12
–44
(1997
).10.
F.
Christiansen
and P.
Cvitanovic
, “Periodic orbit quantization of the anisotropic Kepler problem
,” Chaos
2
, 61
–69
(1992
).11.
P.
Cvitanovic
, “Invariant measurement of strange sets in terms of circles
,” Phys. Rev. Lett.
61
, 2729
–2732
(1988
).12.
J.-P.
Eckmann
, S.
Kamphorst
, and D.
Ruelle
, “Recurrence plots of dynamical systems
,” Europhys. Lett.
4
, 973
–977
(1987
).13.
J.-P.
Eckmann
and D.
Ruelle
, “Ergodic theory of chaos and strange attractors
,” Rev. Mod. Phys.
57
, 617
–656
(1985
).14.
J. H.
Friedman
, J. L.
Bentley
, and R. A.
Finkel
, “An algorithm for finding best matches in logarithmic expected time
,” ACM Trans. Math. Softw.
3
, 209
–226
(1977
).15.
J.
Gao
and H.
Cai
, “On the structures and quantification of recurrence plots
,” Phys. Lett. A
270
, 75
–87
(2000
).16.
A.
Giuliani
, R.
Benigni
, P.
Sirabella
, J.
Zbilut
, and A.
Colosimo
, “Exploiting the information content of protein sequences using time-series methods: A case study in rubredoxins
,” Biophys. J.
78
, 136
–149
(1998
).17.
J.
Guckenheimer
and B.
Meloon
, “Computing periodic orbits and their bifurcations with automatic differentiation
,” SIAM J. Sci. Comput. (USA)
22
, 951
–985
(2000
).18.
G. H.
Gunaratne
, P. S.
Linsay
, and M. J.
Vinson
, “Chaos beyond onset: A comparison of theory and experiment
,” Phys. Rev. Lett.
63
, 1
(1989
).19.
S.
Ikagawa
, M.
Shinohara
, T.
Fukunaga
, J.
Zbilut
, and C.
Webber
, “Nonlinear time-course of lumbar muscle fatigue using recurrence quantifications
,” Biol. Cybern.
82
, 373
–382
(2000
).20.
J.
Iwanski
and E.
Bradley
, “Recurrence plots of experimental data: To embed or not to embed?
” Chaos
8
, 861
–871
(1998
).21.
P.
Kaluzny
and R.
Tarnecki
, “Recurrence plots of neuronal spike trains
,” Biol. Cybern.
68
, 527
–534
(1993
).22.
M. Koebbe and G. Mayer-Kress, “Use of recurrence plots in the analysis of time-series data,” in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank (Addison Wesley, New York, 1992).
23.
H. Löffelman, Ph.D. thesis, Vienna Technical University, November 1998. See also http://www.cg.tuwien.ac.at/∼helwig/diss/node42.htm
24.
G.
McGuire
, N.
Azar
, and M.
Shelhammer
, “Recurrence matrices and the preservation of dynamical properties
,” Phys. Lett. A
237
, 43
–47
(1997
).25.
P.
So
, J.
Francis
, T.
Netoff
, B.
Gluckman
, and S.
Schiff
, “Periodic orbits: A new language for neuronal dynamics
,” Biophys. J.
74
, 2776
–2785
(1998
).26.
P.
So
, E.
Ott
, T.
Sauer
, B.
Gluckman
, C.
Grebogi
, and S.
Schiff
, “Extracting unstable periodic orbits from chaotic time-series data
,” Phys. Rev. E
55
, 5398
–5417
(1997
).27.
P.
So
, E.
Ott
, S.
Schiff
, D.
Kaplan
, T.
Sauer
, and C.
Grebogi
, “Detecting unstable periodic orbits in chaotic experimental data
,” Phys. Rev. Lett.
76
, 4705
–4708
(1996
).28.
C.
Webber
, M.
Schmidt
, and J.
Walsh
, “Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools
,” J. Appl. Physiol.
78
, 814
–822
(1995
).29.
C.
Webber
and J.
Zbilut
, “Dynamical assessment of physiological systems and states using recurrence plot strategies
,” J. Appl. Physiol.
76
, 965
–973
(1994
).30.
J.
Zbilut
, A.
Giuliani
, and C.
Webber
, “Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification
,” Phys. Lett. A
246
, 122
–128
(1998
).31.
J.
Zbilut
, A.
Giuliani
, and C.
Webber
, “Recurrence quantification analysis and principal components in the detection of short complex signals
,” Phys. Lett. A
237
, 131
–135
(1998
).32.
J.
Zbilut
and C.
Webber
, “Embeddings and delays as derived from recurrence quantification analysis
,” Phys. Lett. A
171
, 199
–203
(1992
).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.