We study the coexistence of symmetric non-Birkhoff periodic orbits of C1 reversible monotone twist mappings on the cylinder. We prove the equivalence of the existence of non-Birkhoff periodic orbits and that of transverse homoclinic intersections of stable and unstable manifolds of the fixed point. We derive the positional relation of symmetric Birkhoff and non-Birkhoff periodic orbits and obtain the dynamical ordering of symmetric non-Birkhoff periodic orbits. An extension of the Sharkovskii ordering to two-dimensional mappings has been carried out. In the proof of various properties of the mappings, reversibility plays an essential role.

1.
T.
Matsuoka
, “
Braids of periodic points and a 2-dimensional analogue of Sharkovskii’s ordering
,”
World Sci. Adv. Ser. in Dynamical Systems
1
,
58
72
(
1986
).
2.
K.
Tanikawa
and
Y.
Yamaguchi
, “
Coexistence of periodic points in reversible dynamical systems on a surface
,”
J. Math. Phys.
28
,
921
928
(
1987
).
3.
K.
Tanikawa
and
Y.
Yamaguchi
, “
Coexistence of periodic points in the Standard Map
,”
J. Math. Phys.
30
,
608
616
(
1989
).
4.
P.
Boyland
, “
An analog of Sharkovski’s theorem
,”
Contemp. Math.
81
,
119
133
(
1988
).
5.
P.
Boyland
, “
Topological methods in surface dynamics
,”
Topology and Its Applications
58
,
223
298
(
1994
).
6.
S.
Baldwin
, “
An extension of Sharkovskii’s theorem to the n-od
,”
Ergod. Theory Dyn. Syst.
11
,
249
271
(
1991
).
7.
S.
Baldwin
, “
Version of Sharkovskii’s theorem on trees and dendrites
,”
Topology Proc.
18
,
19
31
(
1993
).
8.
T.
Hall
, “
The creation of horseshoes
,”
Nonlinearity
7
,
861
924
(
1994
).
9.
M.
Handel
, “
The forcing partial order on the three times punctured disk
,”
Ergod. Theory Dyn. Syst.
17
,
593
610
(
1997
).
10.
J.
Los
, “
On the forcing relation for surface homeomorphisms
I.H.E.S.
5
,
61
(
1997
).
11.
A.
Katok
, “
Some remarks on Birkhoff and Mather twist map theorems
,”
Ergod. Theory Dyn. Syst.
2
,
185
194
(
1982
).
12.
G. R.
Hall
, “
A topological version of a theorem of Mather on twist maps
,”
Ergod. Theory Dyn. Syst.
4
,
585
603
(
1984
).
13.
Y.
Yamaguchi
and
K.
Tanikawa
, “
Symmetrical non-Birkhoff period-3 orbits in standard-like mappings
,”
Prog. Theor. Phys.
104
,
943
954
(
2000
).
14.
R. DeVogelaere, “On the structure of symmetric periodic solutions of conservative systems, with applications,” in Contributions to the Theory of Oscillations, Annals of Mathematical Studies, Vol. IV, No. 41 (Princeton University Press, Princeton, 1953), p. 53.
15.
K.
Tanikawa
and
Y.
Yamaguchi
, “
Running homoclinic and periodic points in the standard-like mappings
,”
Prog. Theor. Phys.
106
,
691
696
(
2001
).
16.
G. D.
Birkhoff
, “
The restricted problem of three bodies
,”
Rend. Circolo Mat. Palermo
39
,
265
334
(
1915
);
reprinted in Collected Mathematical Papers (Dover, New York, 1968), Vol. 1, pp. 682–751.
17.
K. Zare and K. Tanikawa, “Reversible maps in two degrees of freedom Hamiltonian systems” (submitted).
18.
Y.
Yamaguchir
and
K.
Tanikawa
, “
Dynamical ordering of non-Birkhoff periodic orbits in a forced pendulum
,”
Prog. Theor. Phys.
106
,
1097
1114
(
2001
).
19.
S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, Berlin, 1991).
20.
Y.
Yamaguchi
and
K.
Tanikawa
, “
Homoclinic intersection in C2 standard-like mappings
,”
Prog. Theor. Phys.
103
,
1127
1136
(
2000
).
21.
G. D.
Birkhoff
, “
Proof of Poincaré’s geometric theorem
,”
Trans. Am. Math. Soc.
14
,
14
22
(
1913
).
22.
G. D.
Birkhoff
, “
An extension of Poincaré’s last geometric theorem
,”
Acta Math.
47
,
297
311
(
1925
).
23.
M.
Brown
and
W. D.
Neumann
, “
Proof of the Poincaré–Birkhoff fixed point theorem
,”
Mich. Math. J.
24
,
21
31
(
1977
).
24.
J.
Franks
, “
A variation of the Poincaré–Birkhoff theorem
,”
Contemp. Math.
81
,
111
116
(
1988
).
25.
J.
Franks
, “
Periodic points and rotation numbers for area preserving diffeomorphisms of the plane
,”
Publ. I.H.E.S.
71
,
105
120
(
1990
).
26.
J.
Palis
, “
On Morse–Smale dynamical systems
,”
Topology
8
,
385
405
(
1969
).
27.
J. Moser, Stable and Random Motions in Dynamical Systems (Princeton University Press, Princeton, 1973).
28.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983).
This content is only available via PDF.
You do not currently have access to this content.