Atomistic lattice-gas models for surface reactions can accurately describe spatial correlations and ordering in chemisorbed layers due to adspecies interactions or due to limited mobility of some adspecies. The primary challenge in such modeling is to describe spatiotemporal behavior in the physically relevant “hydrodynamic” regime of rapid diffusion of (at least some) reactant adspecies. For such models, we discuss the development of exact reaction-diffusion equations (RDEs) describing mesoscale spatial pattern formation in surface reactions. Formulation and implementation of these RDEs requires detailed analysis of chemical diffusion in mixed reactant adlayers, as well as development of novel hybrid and parallel simulation techniques.
REFERENCES
1.
2.
M. Eiswirth and G. Ertl, in Chemical Waves and Patterns, edited by R. Kapral and K. Showalter (Kluwer, Dordrecht, 1994);
3.
4.
5.
M.
Berdau
, G. G.
Yelenin
, A.
Karpowicz
, M.
Ehsasi
, K.
Christmann
, and J. H.
Block
, J. Chem. Phys.
110
, 11551
(1999
).6.
N.
Gottschalk
, F.
Mertens
, M.
Eiswirth
, and R.
Imbihl
, Phys. Rev. Lett.
73
, 3483
(1994
)is a rare example utilizing nonconstant diffusion coefficients to describe the influence of surface reconstruction.
7.
8.
H. Spohn, Large Scale Dynamics in Interacting Particle Systems (Springer, Berlin, 1991).
9.
10.
11.
12.
W.
Swiech
, B.
Rausenberger
, R.
Imbihl
, J. W.
Evans
, C. S.
Rastomjee
, W.
Engel
, A. K.
Schmid
, A. M.
Bradshaw
, and E.
Zeitler
, Surf. Sci.
307–309
, 138
(1994
).13.
14.
M.
Hildebrand
and A. S.
Mikhailov
, J. Phys. Chem.
100
, 19089
(1996
);M.
Hildebrand
, A. S.
Mikhailov
, and G.
Ertl
, Phys. Rev. Lett.
81
, 2602
(1998
);15.
16.
R. M.
Ziff
, E.
Gulari
, and Y.
Barshad
, Phys. Rev. Lett.
56
, 2553
(1986
).17.
18.
19.
R. H.
Goodman
, D. S.
Graff
, L. M.
Sander
, P.
Leroux-Hugon
, and E.
Clement
, Phys. Rev. E
52
, 5904
(1995
);20.
H. C.
Kang
, T. A.
Jachimowiski
, and W. H.
Weinberg
, J. Chem. Phys.
93
, 1418
(1990
);21.
22.
23.
M.
Silverberg
, A.
Ben-Shaul
, and F.
Rebentrost
, J. Chem. Phys.
83
, 6501
(1985
).24.
M.
Tammaro
, M.
Sabella
, and J. W.
Evans
, J. Chem. Phys.
103
, 10277
(1995
).25.
E. W.
James
, C.
Song
, and J. W.
Evans
, J. Chem. Phys.
111
, 6579
(1999
).26.
27.
More generally, one could include hops to nearest-neighbor (NN) sites with rate h, and to next NN sites with rate (likely much smaller than h), etc.
28.
M.
Dumont
, P.
Dufour
, B.
Sente
, and R.
Daggonier
, J. Catal.
122
, 95
(1990
).29.
Y.
Suchorski
, J.
Beben
, E. W.
James
, J. W.
Evans
, and R.
Imbihl
, Phys. Rev. Lett.
82
, 1907
(1999
);Y.
Suchorski
, J.
Beben
, R.
Imbihl
, E. W.
James
, D.-J.
Liu
, and J. W.
Evans
, Phys. Rev. B
63
, 165417
(2001
).30.
31.
C. R.
Brundle
, R. J.
Behm
, and J. A.
Barker
, J. Vac. Sci. Technol. A
2
, 1038
(1984
);S.-L.
Chang
and P. A.
Thiel
, Phys. Rev. Lett.
59
, 296
(1987
).32.
For the steady-state or bifurcation diagram is somewhat anomalous, displaying a transcritical bifurcation at but this does not affect the issues of interest here. In fact, the existence of this “absorbing” state, in the language of Markov processes, actually facilitates precise analysis of poisoning transitions.
33.
A. S. Mikhailov, Foundations of Synergetics I (Springer, Berlin, 1990).
34.
D.-J. Liu and J. W. Evans (unpublished). For our modified model with and where the CO-poisoning transition changes from discontinuous to continuous, for small h.
35.
J. W.
Evans
and M. S.
Miesch
, Phys. Rev. Lett.
66
, 833
(1991
).37.
J. W.
Evans
and M.
Tammaro
, in Computer Simulation Studies in Condensed Matter Physics XI, edited by D. P. Landau and H.-B. Schuettler (Springer, Berlin, 1999), p. 103;38.
One can show that a discrete version of MF RDEs, with “simple” diffusive coupling described by a discretized Laplacian, produces a weaker shift of the form as
39.
A precise analysis is possible for when the metastable state is “absorbing.” Then, one can unambiguously follow the fate of the embedded blob (whereas for a blob could disappear and spontaneously reappear). Also, for perpetual propagation of stable reactive state into inactive state occurs for (whereas the inactive state eventually breaks down for ).
40.
A heuristic treatment of the relationship between and the lifetime can be found in
See also
E. V.
Albano
and J.
Marro
, J. Chem. Phys.
113
, 10279
(2000
).41.
42.
43.
44.
45.
47.
48.
49.
50.
51.
E. W. James, D.-J. Liu, and J. W. Evans (unpublished).
52.
One has where is the pair approximation for the probability of an adsorption ensemble of eight sites not occupied by O(ads)—Ref. 25.
53.
W. E. Schiesser, The Numerical Methods of Lines (Academic, San Diego, 1991).
54.
Compare with and (standard model).
55.
Compare with and (modified model).
56.
57.
A. Bunde and S. Havlin, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1991), Chaps. 2 and 3.
58.
59.
T. M.
Nieuwenhuizen
, P. F. J.
van Velthoven
, and M. H.
Ernst
, Phys. Rev. Lett.
57
, 2477
(1986
).61.
G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).
62.
63.
E. M.
Stuve
, R. J.
Madix
, and C. R.
Brundle
, Surf. Sci.
146
, 155
(1984
).64.
65.
66.
67.
See Appendix F of Ref. 11.
68.
Th.
Fink
, J.-P.
Dath
, M. R.
Bassett
, R.
Imbihl
, and G.
Ertl
, Surf. Sci.
245
, 96
(1991
).69.
J.
Riordan
, C. R.
Doering
, and D.
ben-Avraham
, Phys. Rev. Lett.
75
, 565
(1995
);J.
Mai
, I. M.
Sokolov
, and A.
Blumen
, Phys. Rev. Lett.
77
, 4462
(1996
);D. A.
Kessler
, Z.
Ner
, and L. M.
Sander
, Phys. Rev. E
58
, 107
(1998
).70.
71.
72.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
73.
74.
K. W.
Kehr
, K.
Binder
, and S. M.
Reulin
, Phys. Rev. B
39
, 4891
(1989
).75.
M. Tammaro and J. W. Evans (unpublished) corrects the form proposed in
M.
Tammaro
and J. W.
Evans
, Surf. Sci. Lett.
395
, L207
(1998
) for when 76.
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.