Atomistic lattice-gas models for surface reactions can accurately describe spatial correlations and ordering in chemisorbed layers due to adspecies interactions or due to limited mobility of some adspecies. The primary challenge in such modeling is to describe spatiotemporal behavior in the physically relevant “hydrodynamic” regime of rapid diffusion of (at least some) reactant adspecies. For such models, we discuss the development of exact reaction-diffusion equations (RDEs) describing mesoscale spatial pattern formation in surface reactions. Formulation and implementation of these RDEs requires detailed analysis of chemical diffusion in mixed reactant adlayers, as well as development of novel hybrid and parallel simulation techniques.

1.
G.
Ertl
,
Adv. Catal.
37
,
213
(
1991
);
R.
Imbihl
,
Prog. Surf. Sci.
44
,
185
(
1993
).
2.
M. Eiswirth and G. Ertl, in Chemical Waves and Patterns, edited by R. Kapral and K. Showalter (Kluwer, Dordrecht, 1994);
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
3.
T.
Engel
and
G.
Ertl
,
Adv. Catal.
28
,
1
(
1979
).
4.
L. F.
Razon
and
R. A.
Schmitz
,
Catal. Rev. Sci. Eng.
28
,
89
(
1986
).
5.
M.
Berdau
,
G. G.
Yelenin
,
A.
Karpowicz
,
M.
Ehsasi
,
K.
Christmann
, and
J. H.
Block
,
J. Chem. Phys.
110
,
11551
(
1999
).
6.
N.
Gottschalk
,
F.
Mertens
,
M.
Eiswirth
, and
R.
Imbihl
,
Phys. Rev. Lett.
73
,
3483
(
1994
)
is a rare example utilizing nonconstant diffusion coefficients to describe the influence of surface reconstruction.
7.
R.
Gomer
,
Rep. Prog. Phys.
53
,
917
(
1990
).
8.
H. Spohn, Large Scale Dynamics in Interacting Particle Systems (Springer, Berlin, 1991).
9.
M.
Tammaro
and
J. W.
Evans
,
J. Chem. Phys.
108
,
762
(
1998
).
10.
M.
Tammaro
and
J. W.
Evans
,
J. Chem. Phys.
108
,
7795
(
1998
).
11.
D.-J.
Liu
and
J. W.
Evans
,
J. Chem. Phys.
113
,
10252
(
2000
).
12.
W.
Swiech
,
B.
Rausenberger
,
R.
Imbihl
,
J. W.
Evans
,
C. S.
Rastomjee
,
W.
Engel
,
A. K.
Schmid
,
A. M.
Bradshaw
, and
E.
Zeitler
,
Surf. Sci.
307–309
,
138
(
1994
).
13.
A. S.
Mikhailov
and
G.
Ertl
,
Chem. Phys. Lett.
238
,
104
(
1995
);
V. P.
Zhdanov
,
Chem. Phys. Lett.
267
,
397
(
1997
).
14.
M.
Hildebrand
and
A. S.
Mikhailov
,
J. Phys. Chem.
100
,
19089
(
1996
);
M.
Hildebrand
,
A. S.
Mikhailov
, and
G.
Ertl
,
Phys. Rev. Lett.
81
,
2602
(
1998
);
M.
Hildebrand
and
A. S.
Mikhailov
,
J. Stat. Phys.
101
,
599
(
2000
).
15.
W. H.
Weinberg
,
Annu. Rev. Phys. Chem.
34
,
217
(
1983
);
K.
Binder
and
D. P.
Landau
,
Adv. Chem. Phys.
26
,
91
(
1989
).
16.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
56
,
2553
(
1986
).
17.
J. W.
Evans
,
J. Chem. Phys.
97
,
572
(
1992
);
J. W.
Evans
,
J. Chem. Phys.
98
,
2463
(
1993
).
18.
J. W.
Evans
and
T. R.
Ray
,
Phys. Rev. E
50
,
4302
(
1994
).
19.
R. H.
Goodman
,
D. S.
Graff
,
L. M.
Sander
,
P.
Leroux-Hugon
, and
E.
Clement
,
Phys. Rev. E
52
,
5904
(
1995
);
E. V.
Albano
,
Phys. Rev. E
55
,
7144
(
1997
).
20.
H. C.
Kang
,
T. A.
Jachimowiski
, and
W. H.
Weinberg
,
J. Chem. Phys.
93
,
1418
(
1990
);
K. A.
Fichthorn
and
W. H.
Weinberg
,
J. Chem. Phys.
95
,
1090
(
1991
).
21.
V. P.
Zhdanov
and
B.
Kasemo
,
Surf. Sci.
412/413
,
527
(
1998
).
22.
S.
Volkening
and
J.
Wintterlin
,
J. Chem. Phys.
114
,
6382
(
2001
).
23.
M.
Silverberg
and
A.
Ben-Shaul
,
J. Chem. Phys.
87
,
3178
(
1989
);
M.
Silverberg
and
A.
Ben-Shaul
,
Chem. Phys. Lett.
134
,
491
(
1987
);
M.
Silverberg
and
A.
Ben-Shaul
,
J. Chem. Phys.
87
,
3178
(
1987
);
M.
Silverberg
,
A.
Ben-Shaul
, and
F.
Rebentrost
,
J. Chem. Phys.
83
,
6501
(
1985
).
24.
M.
Tammaro
,
M.
Sabella
, and
J. W.
Evans
,
J. Chem. Phys.
103
,
10277
(
1995
).
25.
E. W.
James
,
C.
Song
, and
J. W.
Evans
,
J. Chem. Phys.
111
,
6579
(
1999
).
26.
A. P. J.
Jansen
and
J. J.
Lukkien
,
Catal. Today
53
,
259
(
1999
).
27.
More generally, one could include hops to nearest-neighbor (NN) sites with rate h, and to next NN sites with rate h (likely much smaller than h), etc.
28.
M.
Dumont
,
P.
Dufour
,
B.
Sente
, and
R.
Daggonier
,
J. Catal.
122
,
95
(
1990
).
29.
Y.
Suchorski
,
J.
Beben
,
E. W.
James
,
J. W.
Evans
, and
R.
Imbihl
,
Phys. Rev. Lett.
82
,
1907
(
1999
);
Y.
Suchorski
,
J.
Beben
,
R.
Imbihl
,
E. W.
James
,
D.-J.
Liu
, and
J. W.
Evans
,
Phys. Rev. B
63
,
165417
(
2001
).
30.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. Lett.
84
,
955
(
2000
).
31.
C. R.
Brundle
,
R. J.
Behm
, and
J. A.
Barker
,
J. Vac. Sci. Technol. A
2
,
1038
(
1984
);
S.-L.
Chang
and
P. A.
Thiel
,
Phys. Rev. Lett.
59
,
296
(
1987
).
32.
For d=0, the steady-state or bifurcation diagram is somewhat anomalous, displaying a transcritical bifurcation at PCO=0, but this does not affect the issues of interest here. In fact, the existence of this “absorbing” state, in the language of Markov processes, actually facilitates precise analysis of poisoning transitions.
33.
A. S. Mikhailov, Foundations of Synergetics I (Springer, Berlin, 1990).
34.
D.-J. Liu and J. W. Evans (unpublished). For our modified model with d=0 and k=1, where the CO-poisoning transition changes from discontinuous to continuous, for small h.
35.
J. W.
Evans
and
M. S.
Miesch
,
Phys. Rev. Lett.
66
,
833
(
1991
).
36.
Extremely weak metastability appears in the standard model (for finite k, or in the ZGB model with k=∞) when h=0. See Refs. 18 and 35 and
R. A.
Monetti
and
E. V.
Albano
,
J. Phys. A
34
,
1103
(
2001
).
37.
J. W.
Evans
and
M.
Tammaro
, in Computer Simulation Studies in Condensed Matter Physics XI, edited by D. P. Landau and H.-B. Schuettler (Springer, Berlin, 1999), p. 103;
J. W.
Evans
and
M.
Tammaro
,
Phys. Rev. E
57
,
5087
(
1998
).
38.
One can show that a discrete version of MF RDEs, with “simple” diffusive coupling described by a discretized Laplacian, produces a weaker shift of the form δP*(h)∼1/h, as h→∞.
39.
A precise analysis is possible for d=0 when the metastable state is “absorbing.” Then, one can unambiguously follow the fate of the embedded blob (whereas for d>0, a blob could disappear and spontaneously reappear). Also, for d=0, perpetual propagation of stable reactive state into inactive state occurs for PCO<P* (whereas the inactive state eventually breaks down for d>0).
40.
A heuristic treatment of the relationship between Rc and the lifetime can be found in
V. P.
Zhdanov
,
Phys. Rev. E
50
,
760
(
1994
).
See also
E. V.
Albano
and
J.
Marro
,
J. Chem. Phys.
113
,
10279
(
2000
).
41.
J. W.
Evans
,
Langmuir
7
,
2514
(
1991
).
42.
B.
Brosilow
and
R. M.
Ziff
,
Phys. Rev. A
46
,
4534
(
1992
).
43.
T.
Tome
and
R.
Dickman
,
Phys. Rev. E
47
,
948
(
1993
).
44.
J. W.
Evans
and
M.
Sabella
,
Trends Stat. Phys.
1
,
107
(
1994
).
45.
U.
Ebert
and
W.
van Saarloos
,
Phys. Rev. Lett.
80
,
1650
(
1998
).
46.
Significant values of ξ relative to Rc produce substantial smearing of P(R)—Ref. 18. KPZ analysis also shows that ξ0 is small on a length scale Lc, for large h (Ref. 9).
47.
V. P.
Zhdanov
,
Surf. Sci.
194
,
1
(
1988
).
48.
R. M.
Ziff
and
B.
Brosilow
,
Phys. Rev. A
46
,
4560
(
1992
).
49.
F. H.
Ree
and
D. A.
Chesnut
,
J. Chem. Phys.
45
,
3983
(
1966
).
50.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
62
,
2134
(
2000
).
51.
E. W. James, D.-J. Liu, and J. W. Evans (unpublished).
52.
One has SO2=[θE/(1−θO)]2S8, where S8≈[(1−2θO)/(1−θO)]8 is the pair approximation for the probability of an adsorption ensemble of eight sites not occupied by O(ads)—Ref. 25.
53.
W. E. Schiesser, The Numerical Methods of Lines (Academic, San Diego, 1991).
54.
Compare P*(∞)=0.397 with P(∞)=0,POpoison=0.378, and P+(∞)=0.500 (standard model).
55.
Compare P*(∞)=0.325 with P(∞)=0 and P+(∞)=0.360 (modified model).
56.
R.
Kutner
and
K. W.
Kehr
,
Philos. Mag. A
48
,
199
(
1983
).
57.
A. Bunde and S. Havlin, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1991), Chaps. 2 and 3.
58.
P. G.
de Gennes
,
Recherche
7
,
919
(
1976
).
59.
T. M.
Nieuwenhuizen
,
P. F. J.
van Velthoven
, and
M. H.
Ernst
,
Phys. Rev. Lett.
57
,
2477
(
1986
).
60.
One can write down a rate equation for the population of “monomers” which are created by reaction of one of the constituent B’s of a just deposited “dimer,” and destroyed by reaction. For the standard model, the analysis in Ref. 9 incorrectly set a1=π−1, and a1 reported in Ref. 11 is also incorrect.
61.
G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).
62.
J.
Wintterlin
,
Adv. Catal.
45
,
131
(
2000
).
63.
E. M.
Stuve
,
R. J.
Madix
, and
C. R.
Brundle
,
Surf. Sci.
146
,
155
(
1984
).
64.
B. N. J.
Persson
,
Surf. Sci. Rep.
15
,
1
(
1992
).
65.
D.-J.
Liu
and
J. W.
Evans
,
J. Chem. Phys.
114
,
10977
(
2001
).
66.
M.
Xu
,
J.
Liu
, and
F.
Zaera
,
J. Chem. Phys.
104
,
8825
(
1996
).
67.
See Appendix F of Ref. 11.
68.
Th.
Fink
,
J.-P.
Dath
,
M. R.
Bassett
,
R.
Imbihl
, and
G.
Ertl
,
Surf. Sci.
245
,
96
(
1991
).
69.
J.
Riordan
,
C. R.
Doering
, and
D.
ben-Avraham
,
Phys. Rev. Lett.
75
,
565
(
1995
);
J.
Mai
,
I. M.
Sokolov
, and
A.
Blumen
,
Phys. Rev. Lett.
77
,
4462
(
1996
);
D. A.
Kessler
,
Z.
Ner
, and
L. M.
Sander
,
Phys. Rev. E
58
,
107
(
1998
).
70.
V. P.
Zhdanov
and
B.
Kasemo
,
Surf. Sci. Rep.
20
,
111
(
1994
).
71.
A. V.
Zhdanova
,
Phys. Rev. B
63
,
153410
(
2001
).
72.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
73.
R. A.
Tahir-Kheli
and
R. J.
Elliot
,
Phys. Rev. B
27
,
844
(
1983
).
74.
K. W.
Kehr
,
K.
Binder
, and
S. M.
Reulin
,
Phys. Rev. B
39
,
4891
(
1989
).
75.
M. Tammaro and J. W. Evans (unpublished) corrects the form proposed in
M.
Tammaro
and
J. W.
Evans
,
Surf. Sci. Lett.
395
,
L207
(
1998
) for DAA when hB/hA>1.
76.
J.
Quastel
,
Commun. Pure Appl. Math.
45
,
623
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.