Abstract formulations of the regulation of gene expression as random Boolean switching networks have been studied extensively over the past three decades. These models have been developed to make statistical predictions of the types of dynamics observed in biological networks based on network topology and interaction bias, p. For values of mean connectivity chosen to correspond to real biological networks, these models predict disordered dynamics. However, chaotic dynamics seems to be absent from the functioning of a normal cell. While these models use a fixed number of inputs for each element in the network, recent experimental evidence suggests that several biological networks have distributions in connectivity. We therefore study randomly constructed Boolean networks with distributions in the number of inputs, K, to each element. We study three distributions: delta function, Poisson, and power law (scale free). We analytically show that the critical value of the interaction bias parameter, p, above which steady state behavior is observed, is independent of the distribution in the limit of the number of elements N→∞. We also study these networks numerically. Using three different measures (types of attractors, fraction of elements that are active, and length of period), we show that finite, scale-free networks are more ordered than either the Poisson or delta function networks below the critical point. Thus the topology of scale-free biochemical networks, characterized by a wide distribution in the number of inputs per element, may provide a source of order in living cells.

1.
P.
Uetz
,
L.
Giot
,
G.
Cagney
,
T. A.
Mansfield
,
R. S.
Judson
,
J. R.
Knight
,
D.
Lockshon
,
V.
Narayan
,
M.
Srinivasan
,
P.
Pochart
,
A.
Qureshi-Emili
,
Y.
Li
,
B.
Godwin
,
D.
Conover
,
T.
Kalbfleisch
,
G.
Vijayadamodar
,
M.
Yang
,
M.
Johnston
,
S.
Fields
, and
J. M.
Rothberg
, “
A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
,”
Nature (London)
403
,
623
(
2000
).
2.
S.
Tavazoie
and
G. M.
Church
, “
Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli
,”
Nat. Biotechnol.
16
,
566
(
1998
).
3.
S. Kauffman and M. Ballivet, Cistem Molecular Corporation, U.S. Patent number 6,100,035 (2000).
4.
S. A.
Kauffman
, “
Metabolic stability and epigenesis in randomly connected nets
,”
J. Theor. Biol.
22
,
437
(
1969
).
5.
L.
Glass
, “
Classification of biological networks by their qualitative dynamics
,”
J. Theor. Biol.
54
,
85
(
1975
).
6.
R. J.
Bagley
and
L.
Glass
, “
Counting and classifying attractors in high dimensional dynamical systems
,”
J. Theor. Biol.
183
,
269
(
1996
).
7.
L.
Glass
and
C.
Hill
, “
Ordered and disordered dynamics in random networks
,”
Europhys. Lett.
41
,
599
(
1998
).
8.
F. Jacob and J. Monod, “On the regulation of gene activity,” in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1961), Vol. 26.
9.
A. Goldbeter, Biochemical Oscillations and Cellular Rhythms (Cambridge University Press, Cambridge, 1996).
10.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A.-L.
Barabasi
, “
The large-scale organization of metabolic networks
,”
Nature (London)
407
,
651
(
2000
).
11.
K.
Kohn
, “
Molecular interaction map of the mammalian cell cycle control and DNA repair systems
,”
Mol. Biol. Cell
10
,
2703
(
1999
).
12.
S. A. Kauffman, Origins of Order (Oxford University Press, Oxford, 1993).
13.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small world’ networks
,”
Nature (London)
393
,
440
(
1998
).
14.
A.-L.
Barabasi
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
(
1999
).
15.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabasi
, “
Error and attack tolerance of complex networks
,”
Nature (London)
406
,
378
(
2000
).
16.
S. A.
Kauffman
, “
The large scale structure and dynamics of gene control circuits: An ensemble approach
,”
J. Theor. Biol.
44
,
167
(
1974
).
17.
B.
Derrida
and
Y.
Pomeau
, “
Random networks of automata: A simple annealed approximation
,”
Europhys. Lett.
1
,
45
(
1986
).
18.
B.
Derrida
and
D.
Stauffer
, “
Phase transition in two-dimensional Kauffman cellular automata
,”
Europhys. Lett.
2
,
739
(
1986
).
19.
H.
Flyvbjerg
, “
An order parameter for networks of automata
,”
J. Phys. A
21
,
L955
(
1988
).
20.
R.
Somogyi
and
C.
Sniegoski
, “
Modeling the complexity of genetic networks: Understanding multigenic and pleiotropic regulation
,”
Complexity
1
,
45
(
1996
).
21.
B.
Luque
and
R.
Sole
, “
Phase transitions in random networks: Simple analytic determination of critical points
,”
Phys. Rev. E
55
,
257
(
1997
).
22.
R.
Albert
and
A.-L.
Barabasi
, “
Dynamics of complex systems: Scaling laws for the period of Boolean networks
,”
Phys. Rev. Lett.
84
,
5660
(
2000
).
23.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992).
24.
J.
Zuber
,
O. I.
Tchernitsa
,
B.
Hinzmann
,
A. C.
Schmitz
,
M.
Grips
,
M.
Hellriegel
,
C.
Sers
,
A.
Rosenthal
, and
R.
Schafer
, “
A genome-wide survey of RAS transformation targets
,”
Nat. Genet.
24
,
144
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.