We study different nonlinear systems which possess noise-induced nonequlibrium transitions and shed light on the role of additive noise in these effects. We find that the influence of additive noise can be very nontrivial: it can induce first- and second-order phase transitions, can change properties of on–off intermittency, or stabilize oscillations. For the Swift–Hohenberg coupling, that is a paradigm in the study of pattern formation, we show that additive noise can cause the formation of ordered spatial patterns in distributed systems. We show also the effect of doubly stochastic resonance, which differs from stochastic resonance, because the influence of noise is twofold: multiplicative noise and coupling induce a bistability of a system, and additive noise changes a response of this noise-induced structure to the periodic driving. Despite the close similarity, we point out several important distinctions between conventional stochastic resonance and doubly stochastic resonance. Finally, we discuss open questions and possible experimental implementations.

1.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
,
J. Phys. A
14
,
L453
(
1981
);
M.
Dykman
and
P.
McClintock
,
Nature (London)
391
,
344
(
1998
);
V. S.
Anishchenko
,
A. B.
Neiman
,
F.
Moss
, and
L.
Schimansky-Geier
,
Sov. Phys. Usp.
42
,
7
(
1999
).
2.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
,
223
(
1998
).
3.
J.
Douglass
,
L.
Wilkens
, and
L.
Pantazelou
,
Nature (London)
365
,
337
(
1993
);
K.
Wiesenfeld
and
F.
Moss
,
Nature (London)
373
,
33
(
1995
);
S.
Bezrukov
and
I.
Vodyanoy
,
Nature (London)
378
,
362
(
1995
);
J.
Collins
,
T.
Imhoff
, and
P.
Grigg
,
Nature (London)
383
,
770
(
1996
);
P.
Cordo
et al.,
Nature (London)
383
,
769
(
1996
).
4.
W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984).
5.
J. Garcı́a-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999).
6.
P.
Landa
,
A.
Zaikin
,
V.
Ushakov
, and
J.
Kurths
,
Phys. Rev. E
61
,
4809
(
2000
).
7.
F.
Marchesoni
,
Phys. Lett. A
237
,
126
(
1998
).
8.
A.
Pikovksy
and
J.
Kurths
,
Phys. Rev. Lett.
78
,
775
(
1997
).
9.
C.
Doering
and
J.
Gadoua
,
Phys. Rev. Lett.
69
,
2318
(
1992
).
10.
J. M. R.
Parrondo
,
C.
Van den Broeck
,
J.
Buceta
, and
F. J.
de la Rubia
,
Physica A
224
,
153
(
1996
).
11.
P.
Reimann
,
R.
Kawai
,
C.
Van den Broeck
, and
P.
Hänggi
,
Europhys. Lett.
45
,
545
(
1999
).
12.
A.
Zaikin
,
J.
Kurths
, and
L.
Schimansky-Geier
,
Phys. Rev. Lett.
85
,
227
(
2000
).
13.
P.
Landa
and
A.
Zaikin
,
Phys. Rev. E
54
,
3535
(
1996
).
14.
P.
Landa
and
A.
Zaikin
, in
Applied Nonlinear Dynamics and Stochastic Systems Near the Millenium
, edited by
J.
Kadtke
and
A.
Bulsara
(
AIP Conference Proceedings
,
Woodbury, NY
,
1997
), Vol.
411
, pp.
321
329
.
15.
J.
Garcı́a-Ojalvo
,
A.
Hernández-Machado
, and
J.
Sancho
,
Phys. Rev. Lett.
71
,
1542
(
1993
).
16.
C.
Van den Broeck
,
J. M. R.
Parrondo
, and
R.
Toral
,
Phys. Rev. Lett.
73
,
3395
(
1994
).
17.
C.
Van den Broeck
,
J. M. R.
Parrondo
,
R.
Toral
, and
R.
Kawai
,
Phys. Rev. E
55
,
4084
(
1997
).
18.
P.
Landa
and
A.
Zaikin
, in
Computing Anticipatory Systems
, edited by
D.
Dubois
and
(
AIP Conference Proceedings
,
Woodbury, NY
,
1998
), Vol.
465
, pp.
419
434
.
19.
P.
Reimann
,
C.
Van den Broeck
, and
R.
Kawai
,
Phys. Rev. E
60
,
6402
(
1999
).
20.
P.
Landa
,
A.
Zaikin
, and
L.
Schimansky-Geier
,
Chaos, Solitons Fractals
9
,
1367
(
1998
).
21.
A.
Zaikin
and
L.
Schimansky-Geier
,
Phys. Rev. E
58
,
4355
(
1998
).
22.
P.
Landa
and
A.
Rabinovitch
,
Phys. Rev. E
61
,
1829
(
2000
).
23.
R. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963), Vol. 1.
24.
P.
Landa
,
A.
Zaikin
,
M.
Rosenblum
, and
J.
Kurths
,
Chaos, Solitons Fractals
9
,
1367
(
1997
).
25.
K.
Dietz
,
Lect. Notes Biomath.
11
,
1
(
1976
).
26.
L.
Olsen
and
W.
Schaffer
,
Science
249
,
499
(
1990
).
27.
R.
Engbert
and
F.
Drepper
,
Chaos, Solitons Fractals
4
,
1147
(
1994
).
28.
R.
Pool
,
Science
243
,
25
(
1989
).
29.
J. Sancho and J. Garcı́a-Ojalvo, in Stochastic Processes in Physics, Chemistry, and Biology, edited by J. Freund and T. Pöschel (Springer, New York, 2000), pp. 235–246.
30.
Note that not always the effective potential description appropriately explains the phase transition in this system (Ref. 33).
31.
C. Van den Broeck, in Stochastic Dynamics, edited by L. Schimansky-Geier and T. Pöschel (Springer, Heidelberg, 1997), p. 7.
32.
S.
Mangioni
,
R.
Deza
,
H. S.
Wio
, and
R.
Toral
,
Phys. Rev. Lett.
79
,
2389
(
1997
).
33.
R.
Müller
,
K.
Lippert
,
A.
Kühnel
, and
U.
Behn
,
Phys. Rev. E
56
,
2658
(
1997
).
34.
The hysteresis may appear if we slowly change c* during integration, i.e., the solution xi for the previous value c*=c−Δc is the initial condition for the next point c*=c by a monotonical variation of c*, where c* is a control parameter (a or σa2) and varied upwards and downwards.
35.
A.
Zaikin
,
J.
Garcı́a-Ojalvo
, and
L.
Schimansky-Geier
,
Phys. Rev. E
60
,
R6275
(
1999
).
36.
N.
Stocks
,
N.
Stei
, and
P.
McClintock
,
J. Phys. A
26
,
385
(
1993
).
37.
K.
Wiesenfeld
et al.,
Phys. Rev. Lett.
72
,
2125
(
1994
).
38.
Z.
Gingl
,
L.
Kiss
, and
F.
Moss
,
Europhys. Lett.
29
,
191
(
1995
).
39.
H.
Gang
,
H.
Haken
, and
X.
Fagen
,
Phys. Rev. Lett.
77
,
1925
(
1996
).
40.
H.
Gang
,
T.
Ditzinger
,
C.
Ning
, and
H.
Haken
,
Phys. Rev. Lett.
71
,
807
(
1993
).
41.
S. Bezrukov and I. Vodyanoy, in Unsolved Problems of Noise and Fluctuations, edited by D. Abbott and L. Kiss (AIP Conference Proceedings, NY, in press).
42.
P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, Berlin, 1992).
43.
For small L hops can be observed even without external force (Ref. 33). With L=18 such hops are very rare.
44.
B.
McNamara
and
K.
Wiesenfeld
,
Phys. Rev. A
39
,
4854
(
1989
).
45.
H.
Kramers
,
Physica
7
,
284
(
1940
);
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
46.
L. Schimansky-Geier and U. Siewert, in Stochastic Dynamics, edited by L. Schimansky-Geier and T. Pöschel (Springer, Heidelberg, 1997), p. 245.
47.
H.
Hempel
,
L.
Schimansky-Geier
, and
J.
Garcı́a-Ojalvo
,
Phys. Rev. Lett.
82
,
3713
(
1999
).
48.
P.
Landa
and
P.
McClintock
,
Phys. Rep.
323
,
4
(
2000
).
49.
A.
Fuliński
,
Phys. Rev. E
52
,
4523
(
1995
).
50.
J.
Micheau
,
W.
Horsthemke
, and
R.
Lefever
,
J. Chem. Phys.
81
,
2450
(
1984
).
51.
P. de Kepper and W. Horsthemke, Synergetics: Far From Equilibrium (Springer, New York, 1979).
52.
S.
Kai
,
T.
Kai
, and
M.
Takata
,
J. Phys. Soc. Jpn.
47
,
1379
(
1979
).
53.
M.
Wu
and
C.
Andereck
,
Phys. Rev. Lett.
65
,
591
(
1990
).
54.
S.
Kai
,
H.
Fukunaga
, and
H.
Brand
,
J. Phys. Soc. Jpn.
56
,
3759
(
1987
).
55.
S.
Kai
,
H.
Fukunaga
, and
H.
Brand
,
J. Stat. Phys.
54
,
1133
(
1989
).
56.
C.
Meyer
,
G.
Ahlers
, and
D.
Cannell
,
Phys. Rev. A
44
,
2514
(
1991
).
57.
D.
Grisowld
and
J.
Tough
,
Phys. Rev. A
36
,
1360
(
1987
).
58.
F. Moss (private communication).
59.
A.
Zaikin
,
K.
Murali
, and
J.
Kurths
,
Phys. Rev. E
63
,
020103
(R) (
2001
).
60.
P.
Landa
,
Europhys. Lett.
36
,
401
(
1996
).
61.
P.
Landa
,
A.
Zaikin
,
A.
Ginevsky
, and
Y. V.
Vlasov
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
,
397
(
1999
).
62.
M.
Usher
and
M.
Feingold
,
Biol. Cybern.
83
,
L11
(
2000
).
63.
A. Correig, M. Urquizu, V. Ryabov, and A. Zaikin (unpublished).
64.
C.
Scheffczyk
et al.,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
1441
(
1997
).
65.
R.
Engbert
et al.,
Phys. Rev. E
56
,
5823
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.