We discuss the dynamics in the laser with an injected signal from a perturbative point of view showing how different aspects of the dynamics get their definitive character at different orders in the perturbation scheme. At the lowest order Adler’s equation [Proc. IRE 34, 351 (1946)] is recovered. More features emerge at first order including some bifurcations sets and the global reinjection conjectured in Physica D 109, 293 (1997). The type of codimension-2 bifurcations present can only be resolved at second order. We show that of the two averaging approximations proposed [Opt. Commun. 111, 173 (1994); Quantum Semiclassic. Opt. 9, 797 (1997); Quantum Semiclassic. Opt. 8, 805 (1996)] differing in the second order terms, only one is accurate to the order required, hence, solving the apparent contradiction among these results. We also show in numerical studies how a homoclinic orbit of the S̆il’nikov type, bifurcates into a homoclinic tangency of a periodic orbit of vanishing amplitude. The local vector field at the transition point contains a Hopf-saddle-node singularity, which becomes degenerate and changes type. The overall global bifurcation is of codimension-3. The parameter governing this transition is θ, the cavity detuning (with respect to the atomic frequency) of the laser.

1.
R.
Adler
,
Proc. IRE
34
,
351
(
1946
),
reprinted in
R.
Adler
,
Proc. IEEE
61
,
1380
(
1973
).
2.
H. G.
Solari
and
G.-L.
Oppo
,
Opt. Commun.
111
,
173
(
1994
).
3.
P. C. D.
Jagher
,
W. A.
van der Graaf
, and
D.
Lenstra
,
Quantum Semiclassic. Opt.
8
,
805
(
1996
).
4.
B.
Krauskopf
,
W. A.
van der Graaf
, and
D.
Lenstra
,
Quantum Semiclassic. Opt.
9
,
797
(
1997
).
5.
M. G.
Zimmermann
,
M. A.
Natiello
, and
H. G.
Solari
,
Physica D
109
,
293
(
1997
).
6.
C. Mayol, M. A. Natiello, and M. G. Zimmermann, Int. J. Bifur. Chaos (in press).
7.
J. R.
Tredicce
,
F. T.
Arecchi
,
G.-L.
Lippi
, and
G. P.
Puccioni
,
J. Opt. Soc. Am. B
2
,
173
(
1985
).
8.
Y. Kuznetsov, Elements of Applied Bifurcation Theory, No. 112 in Applied Mathematical Sciences (Springer-Verlag, Berlin, 1997).
9.
G.-L.
Oppo
,
A.
Politi
,
G.-L.
Lippi
, and
F. T.
Arecchi
,
Phys. Rev. A
34
,
4000
(
1986
).
10.
H.
Zeglache
and
V.
Zehblè
,
Phys. Rev. A
46
,
6015
(
1992
).
11.
L. A.
Lugiato
,
L. M.
Narducci
,
D. K.
Bandy
, and
C. A.
Pennise
,
Opt. Commun.
46
,
64
(
1983
).
12.
A.
Politi
,
G.
Oppo
, and
R.
Badii
,
Phys. Rev. A
33
,
4055
(
1986
).
13.
P. A.
Braza
and
T.
Erneux
,
Phys. Rev. A
40
,
2539
(
1989
).
14.
J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).
15.
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, No. 2 in Text in Applied Mathematics (Springer-Verlag, Berlin, 1991).
16.
L. P.
S̆il’nikov
,
Sov. Math. Dokl.
7
,
155
(
1966
).
17.
M. K. S.
Yeung
and
S.
Strogatz
,
Phys. Rev. E
58
,
4421
(
1998
);
see erratum
M. K. S.
Yeung
and
S.
Strogatz
,
Phys. Rev. E
61
,
2154
(
2000
).
18.
H. G. Solari, M. Natiello, and B. G. Mindlin, Nonlinear Dynamics: A Two-Way Trip From Physics to Math (Institute of Physics, Bristol, 1996).
19.
β will appear below as κ=β/A.
20.
In terms of the original variables (E,W), the rotational symmetry reads as (E,W)→(E exp(iψ0),W) for arbitrary ψ0 and the reflection symmetry reads as (E,W)→(E*|E|i2θ,W).
21.
G.-L.
Oppo
and
A.
Politi
,
Z. Phys. B: Condens. Matter
59
,
111
(
1985
).
22.
Whenever fixed points arise in a saddle-node bifurcation, it is expected that a “local” heteroclinic connection between both fixed points will exist for a small region where κ>κSN. However, a “global” connection between the fixed points [as displayed in (10) for r=0] need not exist in general.
23.
E. Doedel and J. Kernévez, AUTO: Software for Continuation Problems in Ordinary Differential Equations With Applications, Tech. Rep., Applied Mathematics, California Institute of Technology, 1986.
24.
The transversal torus is destroyed in the homoclinic to the transversal orbit of the TB point.
25.
B.
Deng
,
Trans. Am. Math. Soc.
331
,
15
(
1992
).
26.
This holds for parameter values sufficiently close to the HSN, otherwise one expects an open region of parameters where the intersection of these 2-dimensional manifolds occurs.
27.
P.
Gaspard
and
X.-J.
Wang
,
J. Stat. Phys.
48
,
151
(
1987
).
28.
P.
Hirschberg
and
C.
Laing
,
Physica D
89
,
1
(
1995
).
29.
Note that in Ref. 2 a different choice of polar coordinates (r,ψ) has been chosen, thus changing the Aα and α1. Also in Ref. 2 there is a typo in the averaged equations (3.4), ṙ=−(r/2)(⋯).
30.
R. W.
Wittenberg
and
P.
Holmes
,
Physica D
100
,
1
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.