Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.

1.
M. E.
Tinetti
,
J.
Doucette
,
E.
Claus
, and
R.
Marottoli
, “
Risk factors for serious injury during falls by older persons in the community
,”
J. Am. Geriatr. Soc.
43
(
11
),
1214
1221
(
1995
).
2.
A. J.
Blake
,
K.
Morgan
,
M. J.
Bendall
,
H.
Dallosso
,
S. B.
Ebrahim
,
T. H.
Arie
,
P. H.
Fentem
, and
E. J.
Bassey
, “
Falls by elderly people at home: Prevalence and associated factors
,”
Age Ageing
17
(
6
),
365
372
(
1988
).
3.
D. A.
Winter
, “
Biomechanics of normal and pathological gait: Implications for understanding human locomotion control
,”
J. Motor Behav.
21
,
337
355
(
1989
).
4.
J.
Yack
and
R. C.
Berger
, “
Dynamic stability in the elderly: Identifying a possible measure
,”
J. Gerontol.: Med. Sci.
48
(
5
),
M225
M230
(
1993
).
5.
K. G.
Holt
,
S. F.
Jeng
,
R.
Ratcliffe
, and
J.
Hamill
, “
Energetic cost and stability during human walking at the preferred stride frequency
,”
J. Motor. Behav.
27
(
2
),
164
178
(
1995
).
6.
B. E.
Maki
, “
Gait changes in older adults: Predictors of falls or indicators of fear?
J. Am. Geriatr. Soc.
45
(
3
),
313
320
(
1997
).
7.
J. S.
Bay
and
H.
Hemami
, “
Modeling of a neutral pattern generator with coupled nonlinear oscillators
,”
IEEE Trans. Biomed. Eng.
BME-34
(
4
),
297
306
(
1987
).
8.
J. J.
Collins
and
I. N.
Stewart
, “
Coupled nonlinear oscillators and the symmetries of animal gaits
,”
J. Nonlinear Sci.
3
,
349
392
(
1993
).
9.
J. J.
Collins
and
I. N.
Stewart
, “
A group-theoretic approach to rings of coupled biological oscillators
,”
Biol. Cybern.
71
,
95
103
(
1994
).
10.
G.
Taga
, “
A model of the neuro-musculo-skeletal system for human locomotion I: Emergence of basic gait
,”
Biol. Cybern.
73
(
2
),
97
111
(
1995
).
11.
G.
Taga
, “
A model of the neuro-musculo-skeletal system for human locomotion II: Real-time adaptability under various constraints
,”
Biol. Cybern.
73
(
2
),
97
111
(
1995
).
12.
T.
Zielinska
, “
Coupled oscillators utilized as gait rhythm generators of a two-legged walking machine
,”
Biol. Cybern.
74
(
3
),
263
273
(
1996
).
13.
M.
Garcia
,
A.
Chatterjee
,
A.
Ruina
, and
M.
Coleman
, “
The simplest walking model: Stability, complexity, and scaling
,”
J. Biomech. Eng.
120
(
2
),
281
288
(
1998
).
14.
A.
Goswami
,
B.
Thuilot
, and
B.
Espiau
, “
A study of the passive gait of a compass-like biped robot: Symmetry and chaos
,”
Int. J. Robot. Res.
17
(
12
),
1282
1301
(
1998
).
15.
Y.
Hurmuzlu
and
C.
Basdogan
, “
On the measurement of dynamic stability of human locomotion
,”
J. Biomech. Eng.
116
(
1
),
30
36
(
1994
).
16.
Y.
Hurmuzlu
,
C.
Basdogan
, and
D.
Stoianovici
, “
Kinematics and dynamic stability of the locomotion of post-polio patients
,”
J. Biomech. Eng.
118
(
3
),
405
411
(
1996
).
17.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
DeLuca
, “
A practical method for calculating largest Lyapunov exponents from small data sets
,”
Physica D
65
,
117
134
(
1993
).
18.
H. Kantz and S. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).
19.
R. C.
Nelson
,
C. J.
Dillman
,
P.
Lagasse
, and
P.
Bickett
, “
Biomechanics of overground versus treadmill running
,”
Med. Sci. Sports
4
(
4
),
233
240
(
1972
).
20.
G. M.
Strathy
,
E. Y. S.
Chao
, and
R. K.
Laughman
, “
Changes in knee function associated with treadmill ambulation
,”
J. Biomech.
16
(
7
),
517
522
(
1983
).
21.
J.
Pailhous
and
M.
Bonnard
, “
Stead-state fluctuations of human walking
,”
Behav. Brain Res.
4
,
181
190
(
1992
).
22.
M. E.
Pearce
,
D. A.
Cunningham
,
A. P.
Donner
,
P. A.
Rechnitzer
,
G. M.
Fullerton
, and
J. H.
Howard
, “
Energy cost of treadmill and floor walking at self-selected paces
,”
Euro. J. Physiol.
52
(
1
),
115
119
(
1983
).
23.
J.
Isacson
,
L.
Gransberg
, and
E.
Knutsson
, “
Three-dimensional electrogoniometrical gait recording
,”
J. Biomech.
19
(
8
),
627
635
(
1986
).
24.
A. B.
Arsenault
, “
Treadmill versus walkway locomotion in human: An EMG study
,”
Ergonomics
29
(
5
),
665
676
(
1986
).
25.
J. B.
Dingwell
,
J. S.
Ulbrecht
,
J.
Boch
,
M. B.
Becker
,
J.
O’Gorman
, and
P. R.
Cavanagh
, “
Neuropathic gait shows only trends toward increased variability in sagittal plane kinematics during treadmill locomotion
,”
Gait Post.
10
(
1
),
21
29
(
1999
).
26.
J. B. Dingwell, J. P. Cusumano, D. Sternad, and P. R. Cavanagh, “Local dynamic stability versus kinematic variability of continuous overground and treadmill walking,” J. Biomech. Eng. (in revision).
27.
D. A. Greene, A. A. F. Sime, J. W. Albers, and M. A. Pfeifer, “Diabetic Neuropathy,” in Diabetes Mellitus: Theory and Practice, 4th ed. (Elsevier Science, New York, 1990), pp. 710–755.
28.
A. I.
Vinik
,
M. T.
Holland
,
J. M.
LeBeau
,
F. J.
Liuzzi
,
K. B.
Stansberry
, and
L. B.
Colen
, “
Diabetic neuropathies
,”
Diabetes Care
15
(
12
),
1926
1975
(
1992
).
29.
P. R.
Cavanagh
,
J. A.
Derr
,
J. S.
Ulbrecht
,
R. E.
Maser
, and
T. J.
Orchard
, “
Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus
,”
Diabet Med.
9
,
469
474
(
1992
).
30.
J. K.
Richardson
,
C.
Ching
, and
E. A.
Hurvitz
, “
The relationship between electromyographically documented peripheral neuropathy and falls
,”
J. Am. Geriatr. Soc.
40
,
1008
1012
(
1992
).
31.
J. K.
Richardson
and
E. A.
Hurvitz
, “
Peripheral neuropathy: A true risk factor for fall
,”
J. Gerontol. A Biol. Sci. Med. Sci.
50
(
4
),
M211
M215
(
1995
).
32.
M. J.
Mueller
,
S. D.
Minor
,
S. A.
Sahrmann
,
J. A.
Schaf
, and
M. J.
Strube
, “
Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls
,”
Phys. Ther.
74
(
4
),
299
313
(
1994
).
33.
R.
Courtemanche
,
N.
Teasdale
,
P.
Boucher
,
M.
Fleury
,
Y.
Lajoie
, and
C.
Bard
, “
Gait problems in diabetic neuropathic patients
,”
Arch. Phys. Med. Rehabil.
77
(
9
),
849
855
(
1996
).
34.
J. B. Dingwell and P. R. Cavanagh, “Increased variability of continuous overground walking in neuropathic patients is only indirectly related to sensory loss,” Gait Post. (in revision).
35.
D. A.
Winter
, “
Biomechanical motor patterns in normal walking
,”
J. Motor Behav.
15
(
4
),
302
330
(
1983
).
36.
T.
Öberg
,
A.
Karsznia
, and
K.
Öberg
, “
Basic gait parameters: Reference data for normal subjects, 10–79 years of age
,”
J. Rehabil. Res. Dev.
30
(
2
),
210
223
(
1993
).
37.
L. M.
Nashner
, “
Balance adjustments of humans perturbed while walking
,”
J. Neurophysiol.
44
(
4
),
650
664
(
1980
).
38.
S. C.
Gandevia
and
D.
Burke
, “
Does the nervous system depend on kinesthetic information to control natural limb movements?
Behav. Brain Sci.
15
,
614
632
(
1992
).
39.
J. M.
Hausdorff
,
C. K.
Peng
,
Z.
Ladin
,
J. Y.
Wei
, and
A. L.
Goldberger
, “
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
,”
J. Appl. Physiol.
78
(
1
),
349
358
(
1995
).
40.
J. M.
Hausdorff
,
S. L.
Mitchell
,
R.
Firtion
,
C. K.
Peng
,
M. E.
Cudkowicz
,
J. Y.
Wei
, and
A. L.
Goldberger
, “
Altered fractal dynamics of gait: Reduced stride interval correlations with aging and Huntington’s disease
,”
J. Appl. Physiol.
82
(
1
),
262
269
(
1997
).
41.
B. J.
West
and
L.
Griffin
, “
Allometric control, inverse powers laws and human gait
,”
Chaos, Solitons, Fractals
10
(
9
),
1519
1527
(
1999
).
42.
Y.
Chen
,
M.
Ding
, and
J. A. S.
Kelso
, “
Long memory processes (1/fα type) in human coordination
,”
Phys. Rev. Lett.
79
(
22
),
4501
4504
(
1997
).
43.
D. T. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer-Verlag, New York, 1995).
44.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
, “
Testing for nonlinearity in time series: The method of surrogate data
,”
Physica D
58
,
77
94
(
1992
).
45.
F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980 (Springer-Verlag, Berlin, 1981), pp. 366–381.
46.
R. Mañé, “On the dimension of the compact invariant sets of certain non-linear maps,” in Dynamical Systems and Turbulence, Warwick 1980 (Springer-Verlag, Berlin, 1981), pp. 230–242.
47.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
(
3/4
),
579
616
(
1991
).
48.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
49.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining minimum embedding dimension using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
50.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
977
(
1987
).
51.
A. Babloyantz, “Some remarks on nonlinear data analysis of physiological time series,” in Measures of Complexity and Chaos (Plenum, New York, 1989).
52.
M. C.
Casdagli
, “
Recurrence plots revisited
,”
Physica D
108
(
1
),
12
44
(
1997
).
53.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
54.
J.
Theiler
, “
Estimating fractal dimensions
,”
J. Opt. Soc. Am. A
7
(
6
),
1055
1073
(
1990
).
55.
H.
Kantz
and
T.
Schreiber
, “
Dimension estimates and physiological data
,”
Chaos
5
(
1
),
143
154
(
1995
).
56.
H. D. I.
Abarbanel
,
R.
Brown
,
J. J.
Sidorowich
, and
L. S.
Tsimring
, “
The analysis of observed chaotic data in physical systems
,”
Rev. Mod. Phys.
65
,
1331
1392
(
1993
).
57.
J.
Timmer
,
S.
Häussler
,
M.
Lauk
, and
C.-H.
Lücking
, “
Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators?
Chaos
10
(
1
),
278
288
(
2000
).
58.
F. L. Ramsey and D. W. Schafer, The Statistical Sleuth: A Course in Methods of Data Analysis (Duxbury, Wadsworth, Belmont, CA, 1997).
59.
J. F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black, Multivariate Data Analysis, 5th ed. (Prentice Hall, Englewood Cliffs, NJ, 1998).
60.
J. B.
Dingwell
,
J. P.
Cusumano
,
D.
Sternad
, and
P. R.
Cavanagh
, “
Slower speeds in neuropathic patients lead to improved local dynamic stability of continuous overground walking
,”
J. Biomech.
33
(
10
),
1269
1277
(
2000
).
61.
E. N.
Lorenz
, “
Deterministic non-periodic flows
,”
J. Atmos. Sci.
7
,
130
141
(
1963
).
62.
J. B. Dingwell, J. P. Cusumano, D. Sternad, and P. R. Cavanagh, “Using Lyapunov exponents to quantify dynamic stability during continuous overground locomotion,” in Proceedings of the Third North American Congress on Biomechanics (University of Waterloo, Waterloo, Ontario, Canada, 1998), pp. 125–126.
63.
M. J.
Pavol
,
T. M.
Owings
,
K. T.
Foley
, and
M. D.
Grabiner
, “
The sex and age of older adults influence the outcome of induced trips
,”
J. Gerontol. A Biol. Sci. Med. Sci.
54
(
2
),
M103
M108
(
1999
).
64.
M. J.
Pavol
,
T. M.
Owings
,
K. T.
Foley
, and
M. D.
Grabiner
, “
Gait characteristics as risk factors for falling from trips induced in older adults
,”
J. Gerontol. A Biol. Sci. Med. Sci.
54
(
11
),
M583
M590
(
1999
).
65.
N. Bernstein, The Coordination and Regulation of Movements (Pergamon, New York, 1935).
66.
R. J.
Full
and
D. E.
Koditschek
, “
Templates and anchors: Neuromechanical hypothesis of legged locomotion
,”
J. Exp. Biol.
202
(
23
),
3325
3332
(
1999
).
67.
S.
Ellner
and
P.
Turchin
, “
Chaos in a noisy world: New methods and evidence from time-series analysis
,”
Am. Nat.
145
(
3
),
343
375
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.