Data compiled from a variety of sources follow Benford’s law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford’s law. Finally, three chaotic systems are considered: Lorenz, Hénon, and Rössler. The Lorenz system generates trajectories that follow Benford’s law. The Hénon system generates trajectories that resemble neither the uniform distribution nor Benford’s law. Finally, the Rössler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford’s law for others.

1.
S.
Newcomb
, “
Note on the frequency of use of the different digits in natural numbers
,”
Am. J. Math.
4
,
39
40
(
1881
).
2.
F.
Benford
, “
The law of anomalous numbers
,”
Proc. Am. Philos. Soc.
78
,
551
572
(
1938
).
3.
R. A.
Raimi
, “
The first digit problem
,”
Am. Math. Monthly
83
,
521
538
(
1976
).
4.
T. P.
Hill
, “
Base-invariance implies Benford’s law
,”
Proc. Am. Math. Soc.
123
,
887
895
(
1995
).
5.
T. P.
Hill
, “
The significant-digit phenomenon
,”
Am. Math. Monthly
102
,
322
326
(
1995
).
6.
T. P.
Hill
, “
A statistical derivation of the significant-digit law
,”
Stat. Sci.
10
,
354
363
(
1995
).
7.
R. A.
Raimi
, “
The peculiar distribution of first digits
,”
Sci. Am.
221
,
109
119
(
1969
).
8.
T. P.
Hill
, “
The first digit phenomenon
,”
Am. Sci.
86
,
358
363
(
1998
).
9.
R.
Matthews
, “
The power of one
,”
New Sci.
163:2194
,
27
30
(
1999
);
see also http://www.newscientist.com/ns/19990710/thepowerof.html
10.
E. W. Weisstein, http://www.treasuretroves.com/math/BenfordsLaw. html, 11 August 1999.
11.
J. V. Bradley, Distribution-Free Statistical Tests (Prentice-Hall, Englewood Cliffs, NJ, 1968).
12.
D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer-Verlag, New York, 1995).
13.
S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).
14.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
15.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, San Diego, 1986).
16.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,”
J. Am. Chem. Soc.
114
,
10024
10046
(
1992
).
17.
H. J. C.
Berendsen
,
J. P. C.
Postma
,
W. F.
van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3689
(
1984
).
18.
M. J. L.
Sangster
and
M.
Dixon
, “
Interionic potentials in alkali halides and their use in simulation of molten salts
,”
Adv. Phys.
25
,
247
342
(
1976
).
19.
F. H.
Stillinger
and
T. A.
Weber
, “
Packing structures and transitions in liquids and solids
,”
Science
225
,
983
989
(
1984
).
20.
F. H.
Stillinger
and
R. A.
LaViolette
, “
Sensitivity of liquid-state inherent structure to details of intermolecular forces
,”
J. Chem. Phys.
83
,
6413
(
1985
).
21.
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, Reading, PA, 1994).
22.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
, “
Testing for nonlinearly in time series: the method of surrogate data
,”
Physica D
58
,
77
94
(
1992
).
23.
S.
Wolfram
, “
Random sequence generation by cellular automata
,”
Adv. Appl. Math.
7
,
123
169
(
1986
).
24.
M.
Nigrini
, “
A taxpayer compliance application of Benford’s law
,”
J. Amer. Tax. Assoc.
18
,
72
91
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.