We discuss the properties of invariant measures corresponding to iterated function systems (IFSs) with place-dependent probabilities and compute their Rényi entropies, generalized dimensions, and multifractal spectra. It is shown that with certain dynamical systems, one can associate the corresponding IFSs in such a way that their generalized entropies are equal. This provides a new method of computing entropy for some classical and quantum dynamical systems. Numerical techniques are based on integration over the fractal measures.
Topics
Entropy
REFERENCES
1.
J.-P.
Eckmann
and D.
Ruelle
, “Ergodic theory of chaos and strange attractors
,” Rev. Mod. Phys.
57
, 617
–653
(1985
).2.
A.
Cohen
and I.
Procaccia
, “Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems
,” Phys. Rev. A
31
, 1872
–1882
(1985
).3.
P. Schuster, Deterministic Chaos. An Introduction (VCH Verlagsgesellschaft, Weinheim, 1988).
4.
W.
Słomczyński
and K.
Życzkowski
, “Quantum chaos, an entropy approach
,” J. Math. Phys.
35
, 5674
–5700
(1994
);5.
K. Życzkowski and W. Słomczyński, “Coherent states quantum entropy,” in Proceedings of the International Conference on Dynamical Systems and Chaos, Tokyo, 23-27 May, 1994, Vol 2, edited by Y. Aizawa et al. (World Scientific, Singapore, 1995), pp. 467–470.
6.
J.
Kwapień
, W.
Słomczyński
, and K.
Życzkowski
, “Coherent states measurement entropy
,” J. Phys. A
30
, 3175
–3200
(1997
).7.
W.
Słomczyński
and K.
Życzkowski
, “Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit
,” Phys. Rev. Lett.
80
, 1880
–1883
(1998
).8.
A.
Lasota
and J.
Myjak
, “Generic properties of fractal measures
,” Bull. Pol. Acad., Math.
42
, 283
–296
(1994
).9.
T. Szarek, “Generic properties of learning systems,” Ann. Polon. Math. (to be published).
10.
M. F. Barnsley, Fractals Everywhere (Academic, Boston, 1988; 2nd ed., 1993).
11.
I.
Guarneri
and G.
Mantica
, “Multifractal energy spectra and their dynamical implications
,” Phys. Rev. Lett.
73
, 3379
–3382
(1994
).12.
J.
Bene
and P.
Szépfalusy
, “Multifractal properties in the one-dimensional random-field Ising model
,” Phys. Rev. A
37
, 1703
–1707
(1988
).13.
G.
Radons
, “Emergence of quenched phases and second order transitions for sums of multifractal measures
,” Phys. Rev. Lett.
75
, 2518
–2521
(1995
).14.
M. F.
Barnsley
, S. G.
Demko
, J. H.
Elton
, and J. S.
Geronimo
, “Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities
,” Ann. Inst. Henri Poincaré, Sect. A
24
, 367
–394
(1988
);M. F.
Barnsley
, S. G.
Demko
, J. H.
Elton
, and J. S.
Geronimo
, Ann. Inst. Henri Poincaré, Sect. A
25
, 589
(1989
).15.
M. Iosifescu and G. Grigorescu, Dependence with Complete Connections and Its Applications (Cambridge University Press, Cambridge, 1990).
16.
A.
Csordás
, G.
Györgyi
, P.
Szépfalusy
, and T.
Tél
, “Statistical properties of chaos demonstrated in a class of one-dimensional maps
,” Chaos
3
, 31
–50
(1993
).17.
A. O.
Lopes
and Wm. D.
Withers
, “Weight-balanced measures and free energy for one-dimensional dynamics
,” Forum Math.
5
, 161
–182
(1993
).18.
P.
Góra
and A.
Boyarsky
, “Iterated function systems and dynamical systems
,” Chaos
5
, 634
–639
(1995
).19.
W.
Słomczyński
, “From quantum entropy to iterated function systems
,” Chaos Solitons Fractals
8
, 1861
–1864
(1997
).20.
E. S.
Abers
and B. W.
Lee
, “Gauge theories
,” Phys. Rep.
9
, 1
–141
(1973
).21.
T.
Kaijser
, “On a new contraction condition for random systems with complete connections
,” Rev. Roum. Math. Pures et Appl.
26
, 1075
–1117
(1981
).22.
J. H.
Elton
, “An ergodic theorem for iterated maps
,” Ergod. Th. & Dynam. Sys.
7
, 481
–488
(1987
).23.
M.
Barnsley
and J. E.
Elton
, “A new class of Markov processes for image encoding
,” Adv. Appl. Probab.
20
, 14
–32
(1988
).24.
L. Arnold and H. Crauel, “Iterated function systems and multiplicative ergodic theory,” in Diffusion Processes and Related Problems in Analysis, Vol. II, edited by M. Pinsky and V. Wihstutz (Birkhauser, Boston, 1992), pp. 283–305.
25.
S.
Grigorescu
, “Limit theorems for Markov chains arising from iterated function systems
,” Rev. Roum. Math. Pures et Appl.
37
, 887
–899
(1992
).26.
E. Gadde, Stable IFSs with probabilities. An ergodic theorem, Research Rep. 10, (1994) Dept. of Mathematics, Umeå University.
27.
A.
Lasota
and J. A.
Yorke
, “Lower bound technique for Markov operators and iterated function systems,” Random Comput. Dyn.
2
, 41
–77
(1994
).28.
W.
Jarczyk
and A.
Lasota
, “Invariant measures for fractals and dynamical systems
,” Bull. Pol. Acad., Math.
43
, 347
–361
(1995
).29.
A. Lasota, “From fractals to stochastic differential equations,” in Chaos—The Interplay Between Stochastic and Deterministic Behaviour, edited by P. Garbaczewski et al. (Springer, Berlin, 1995), pp. 235–255.
30.
K.
Łoskot
and R.
Rudnicki
, “Limit theorems for stochastically perturbed dynamical systems
,” J. Appl. Probab.
32
, 459
–469
(1995
).31.
B.
Forte
and F.
Mendivil
, “A classical ergodic property for IFS: a simple proof
,” Ergod. Th. & Dynam. Sys.
18
, 609
–611
(1998
).32.
D.
Silvestrov
and Ö.
Stenflo
, “Ergodic theorems for iterated function systems controlled by regenerative sequences
,” J. Theoret. Probab.
11
, 589
–608
(1998
).33.
A. Öberg, Approximation of invariant measures for iterated function systems, U.U.D.M. Doctoral thesis 5 (1998), Dept. of Mathematics, Umeå University.
34.
A.
Edalat
, “Power domains and iterated function systems
,” Inform. and Comput.
124
, 182
–197
(1996
).35.
A. Lasota and M. Mackey, Chaos, Fractals and Noise (Springer, Berlin, 1994).
36.
K.
Życzkowski
and W.
Słomczyński
, “Exponential decay of relative entropies to the Kolmogorov-Sinai entropy for the standard map
,” Phys. Rev. E
52
, 6879
–6880
(1995
).37.
Yu. Kifer, Ergodic Theory of Random Transformations (Birkhauser, Boston, 1986).
38.
J. N. Kapur, Measures of Information and Their Applications (Wiley, New York, 1994).
39.
A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley Symp. Math. Statist. Prob. 1960, Vol. I (University of California Press, Berkeley, 1961), pp. 547–561.
40.
F.
Takens
and E.
Verbitski
, “Generalized entropies: Rényi and correlation integral approach
,” Nonlinearity
11
, 771
–782
(1998
).41.
D.
Bessis
, G.
Paladin
, G.
Turchetti
, and S.
Vaienti
, “Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets
,” J. Stat. Phys.
51
, 109
–134
(1988
).42.
J.-M.
Ghez
, E.
Orlandini
, M.-C.
Tesi
, and S.
Vaienti
, “Dynamical integral transform on fractal sets and the computation of entropy
,” Physica D
63
, 282
–298
(1993
).43.
W. Słomczyński, “Dynamical entropy and iterated function systems” (in preparation).
44.
H.
Hentschel
and I.
Procaccia
, “The infinite number of generalized dimensions of fractals and strange attractors
,” Physica D
8
, 435
–444
(1983
).45.
P.
Grassberger
and I.
Procaccia
, “On the characterization of strange attractors
,” Phys. Rev. Lett.
50
, 346
–349
(1983
).46.
L. Olsen, Random Geometrically Graph Directed Self-Similar Multifractals (Longman, Harlow, 1994).
47.
L.
Olsen
, “A multifractal formalism
,” Adv. Math.
116
, 82
–196
(1995
).48.
K. Falconer, Techniques in Fractal Geometry (Wiley, Chichester, 1997).
49.
W.
Chin
, B.
Hunt
, and J. A.
Yorke
, “Correlation dimension for iterated function systems
,” Trans. Am. Math. Soc.
349
, 1783
–1796
(1997
).50.
T. C.
Halsey
, M. H.
Jensen
, L. P.
Kadanoff
, I.
Procaccia
, and B. I.
Schraiman
, “Fractal measures and their singularities. The characterization of strange sets
,” Phys. Rev. A
33
, 1141
–1151
(1986
).51.
T.
Bohr
and D.
Rand
, “The entropy function for characteristic exponents
,” Physica D
25
, 387
–398
(1987
).52.
D.
Rand
, “The singularity spectrum for cookie-cutters
,” Ergod. Th. & Dynam. Sys.
9
, 527
–541
(1989
).53.
L.
Barreira
, Y.
Pesin
, and J.
Schmeling
, “On a general concept of multifractality, multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity
,” Chaos
7
, 27
–38
(1997
).54.
I. Białynicki - Birula and D. Wójcik, private communication.
55.
M.
Holschneider
, “Large-scale renormalization of Fourier-transforms of self-similar measures and self-similarity of Riesz measures
,” J. Math. Anal. Appl.
200
, 307
–314
(1996
).56.
M.
Fannes
, B.
Nachtergaele
, and L.
Slegers
, “Functions of Markov processes and algebraic measures
,” Rev. Math. Phys.
4
, 39
–64
(1992
).57.
P.
Grassberger
and I.
Procaccia
, “Estimation of the Kolmogorov entropy from a chaotic signal
,” Phys. Rev. A
28
, 2591
–2593
(1983
).58.
K.
Pawelzik
and H. G.
Schuster
, “Generalized dimensions and entropies from a measured time series
,” Phys. Rev. A
35
, 481
–484
(1987
).59.
K.
Życzkowski
and E.
Bolt
, “On the entropy devil’s staircase for the family of gap tent maps
,” Physica D
132
, 392
–410
(1999
).60.
Y.-C.
Lai
, K.
Życzkowski
, and C.
Grebogi
, “Universal behavior in the parametric evolution of chaotic saddles
,” Phys. Rev. E
59
, 5261
–5265
(1999
).61.
A. Ostruszka, P. Pakoński, W. Słomczyński, and K. Życzkowski, “Dynamical entropy for systems with stochastic perturbations,” preprint chao-dyn 9905041.
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.