Sickle cell disease is a hereditary disorder in which the pathophysiology is driven by the aggregation of a mutant (sickle) hemoglobin (HbS). The self-assembly of deoxygenated sickle hemoglobin molecules into ordered fiber structures has consequences extending to the cellular and rheological levels, stiffening red blood cells and inducing pathological flow behavior. This review explores the current understanding of the molecular processes involved in the polymerization of hemoglobin in sickle cell disease and how the molecular phase transition creates quantifiable changes at the cellular and rheological scale, as well as, identifying knowledge gaps in the field that would improve our understanding of the disease and further improve treatment and management of the disease.

1.
Alexy
,
T.
,
Pais
,
E.
,
Armstrong
,
J. K.
,
Meiselman
,
H. J.
,
Johnson
,
C. S.
et al, “
Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: Implications for transfusion therapy
,”
Transfusion
46
(
6
),
912
918
(
2006
).
2.
Ataga
,
K. I.
,
Kutlar
,
A.
,
Kanter
,
J.
,
Liles
,
D.
,
Cancado
,
R.
et al, “
Crizanlizumab for the prevention of pain crises in sickle cell disease
,”
N. Engl. J. Med.
376
(
5
),
429
439
(
2017
).
3.
Ballas
,
S. K.
, “
Sickle cell disease: Classification of clinical complications and approaches to preventive and therapeutic management
,”
Clin. Hemorheol. Microcirc.
68
(
2–3
),
105
128
(
2018
).
4.
Ballas
,
S. K.
and
Smith
,
E. D.
, “
Red blood cell changes during the evolution of the sickle cell painful crisis
,”
Blood
79
(
8
),
2154
2163
(
1992
).
5.
Barabino
,
G. A.
,
Platt
,
M. O.
, and
Kaul
,
D. K.
, “
Sickle cell biomechanics
,”
Annu. Rev. Biomed. Eng.
12
,
345
367
(
2010
).
6.
Baum
,
K. F.
,
Dunn
,
D. T.
,
Maude
,
G. H.
, and
Serjeant
,
G. R.
, “
The painful crisis of homozygous sickle cell disease A study of risk factors
,”
Arch. Intern. Med.
147
,
1231
1234
(
1987
).
7.
Boisson
,
C.
,
Nader
,
E.
,
Renoux
,
C.
,
Gauthier
,
A.
,
Poutrel
,
S.
et al, “
Shear-stress-gradient and oxygen-gradient ektacytometry in sickle cell patients at steady state and during vaso-occlusive crises
,”
Cells
11
(
3
),
585
(
2022
).
8.
Bowers
,
A. S.
,
Reid
,
H. L.
,
Greenidge
,
A.
,
Landis
,
C.
, and
Reid
,
M.
, “
Blood viscosity and the expression of inflammatory and adhesion markers in homozygous sickle cell disease subjects with chronic leg ulcers
,”
PLoS One
8
(
7
),
e68929
(
2013
).
9.
Briehl
,
R. W.
, “
Nucleation, fiber growth and melting, and domain formation and structure in sickle cell hemoglobin gels
,”
J. Mol. Biol.
245
(
5
),
710
723
(
1995
).
10.
Brousse
,
V.
,
Buffet
,
P.
, and
Rees
,
D.
, “
The spleen and sickle cell disease: The sick(led) spleen
,”
Br. J. Haematol.
166
(
2
),
165
176
(
2014
).
11.
Bucherer
,
C.
,
Ladjouzi
,
J.
,
Lacombe
,
C.
,
Leliévre
,
J. C.
,
Vandewalle
,
H.
et al, “
Effect of deoxygenation on rheological behavior of density separated sickle cell suspensions
,”
Clin. Hemorheol. Microcirc.
12
(
3
),
415
425
(
1992
).
12.
Carragher
,
B.
,
Bluemke
,
D. A.
,
Gabriel
,
B.
,
Potel
,
M. J.
, and
Josephs
,
R.
, “
Structural analysis of polymers of sickle cell hemoglobin: I. Sickle hemoglobin fibers
,”
J. Mol. Biol.
199
(
2
),
315
331
(
1988
).
13.
Caruso
,
C.
,
Cheng
,
X.
,
Michaud
,
M. E.
,
Szafraniec
,
H. M.
,
Thomas
,
B. E.
et al, “
Less deformable erythrocyte subpopulations biomechanically induce endothelial inflammation in sickle cell disease
,”
Blood
144
,
2050
(
2024
).
14.
Castle
,
B. T.
,
Odde
,
D. J.
, and
Wood
,
D. K.
, “
Rapid and inefficient kinetics of sickle hemoglobin fiber growth
,”
Sci. Adv.
5
(
3
),
eaau1086
(
2019
).
15.
Charache
,
S.
,
Dover
,
G.
,
Smith
,
K.
,
Talbot
,
C. C.
,
Moyer
,
M.
et al, “
Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex
,”
Proc. Natl. Acad. Sci. U. S. A.
80
(
15
),
4842
4846
(
1983
).
16.
Charache
,
S.
,
Dover
,
G. J.
,
Moore
,
R. D.
,
Eckert
,
S.
,
Ballas
,
S. K.
et al, “
Hydroxyurea: Effects on hemoglobin F production in patients with sickle cell anemia [see comments]
,”
Blood
79
(
10
),
2555
2565
(
1992
).
17.
Chien
,
S.
,
Sung
,
K. L.
,
Skalak
,
R.
,
Usami
,
S.
, and
Tözeren
,
A.
, “
Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane
,”
Biophys. J.
24
(
2
),
463
487
(
1978
).
18.
Chien
,
S.
,
Usami
,
S.
, and
Bertles
,
J. F.
, “
Abnormal rheology of oxygenated blood in sickle cell anemia
,”
J. Clin. Invest.
49
(
4
),
623
634
(
1970
).
19.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R. J.
, and
Gregersen
,
M. I.
, “
Blood viscosity: Influence of erythrocyte deformation
,”
New Series
157
(
3790
),
827
829
(
1967
).
20.
Christoph
,
G. W.
,
Hofrichter
,
J.
, and
Eaton
,
W. A.
, “
Understanding the shape of sickled red cells
,”
Biophys. J.
88
(
2
),
1371
1376
(
2005
).
21.
Cieri-Hutcherson
,
N. E.
,
Hutcherson
,
T. C.
,
Conway-Habes
,
E. E.
,
Burns
,
B. N.
, and
White
,
N. A.
, “
Systematic review of l-glutamine for prevention of vaso-occlusive pain crisis in patients with sickle cell disease
,” in
Pharmacotherapy
(
Pharmacotherapy Publications, Inc.
,
2019
), Vol.
39
, Issue 11, pp.
1095
1104
.
22.
Clark
,
M. R.
,
Mohandas
,
N.
, and
Shohet
,
S. B.
, “
Deformability of oxygenated irreversibly sickled cells
,”
J. Clin. Invest.
65
(
1
),
189
196
(
1980
).
23.
Connes
,
P.
, “
Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness
,”
Clin. Hemorheol. Microcirc.
86
(
1–2
),
9
27
(
2024
).
24.
Connes
,
P.
,
Alexy
,
T.
,
Detterich
,
J.
,
Romana
,
M.
,
Hardy-Dessources
,
M. D.
et al, “
The role of blood rheology in sickle cell disease
,”
Blood Rev.
30
(
2
),
111
118
(
2016
).
25.
Darbari
,
D. S.
,
Sheehan
,
V. A.
, and
Ballas
,
S. K.
, “
The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management
,”
Eur. J. Haematol.
105
(
3
),
237
246
(
2020
).
26.
De Souza
,
D. C.
,
Hebert
,
N.
,
Esrick
,
E. B.
,
Ciuculescu
,
M. F.
,
Archer
,
N. M.
et al, “
Genetic reversal of the globin switch concurrently modulates both fetal and sickle hemoglobin and reduces red cell sickling
,”
Nat. Commun.
14
(
1
),
5850
(
2023
).
27.
Demers
,
M.
,
Sturtevant
,
S.
,
Guertin
,
K. R.
,
Gupta
,
D.
,
Desai
,
K.
et al, “
MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease
,”
Blood Adv.
5
(
5
),
1388
1402
(
2021
).
28.
DeSimone
,
J.
,
Heller
,
P.
,
Hall
,
L.
, and
Zwiers
,
D.
, “
5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons
,”
Proc. Natl. Acad. Sci. U. S. A.
79
(
14
),
4428
4431
(
1982
).
29.
Di Caprio
,
G.
,
Schonbrun
,
E.
,
Gonçalves
,
B. P.
,
Valdez
,
J. M.
,
Wood
,
D. K.
et al, “
High-throughput assessment of hemoglobin polymer in single red blood cells from sickle cell patients under controlled oxygen tension
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
50
),
25236
25242
(
2019
).
30.
Du
,
E.
,
Diez-Silva
,
M.
,
Kato
,
G. J.
,
Dao
,
M.
, and
Suresh
,
S.
, “
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
5
),
1422
1427
(
2015
).
31.
Dykes
,
G.
,
Crepeau
,
R. H.
, and
Edelstein
,
S. J.
, “
Three-dimensional reconstruction of the fibres of sickle cell haemoglobin
,”
Nature
272
(
5653
),
506
510
(
1978
).
32.
Dykes
,
G. W.
,
Crepeau
,
R. H.
, and
Edelstein
,
S. J.
, “
Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S
,”
J. Mol. Biol.
130
(
4
),
451
472
(
1979
).
33.
Eaton
,
W. A.
, “
Impact of hemoglobin biophysical studies on molecular pathogenesis and drug therapy for sickle cell disease
,” in
Molecular Aspects of Medicine
(
Elsevier Ltd
.,
2022
), Vol.
84
.
34.
Eaton
,
W. A.
and
Hofrichter
,
J.
, “
Sickle cell hemoglobin polymerization
,”
Adv. Protein Chem.
40
,
63
279
(
1990
).
35.
El Hoss
,
S.
,
Cochet
,
S.
,
Marin
,
M.
,
Lapouméroulie
,
C.
,
Dussiot
,
M.
et al, “
Insights into determinants of spleen injury in sickle cell anemia
,”
Blood Adv.
3
(
15
),
2328
2336
(
2019
).
36.
Esrick
,
E. B.
,
Lehmann
,
L. E.
,
Biffi
,
A.
,
Achebe
,
M.
,
Brendel
,
C.
et al, “
Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease
,”
N. Engl. J. Med.
384
(
3
),
205
215
(
2021
).
37.
Evans
,
E. A.
, “
New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells
,”
Biophys. J.
13
(
9
),
941
954
(
1973
).
38.
Evans
,
E. A.
, “
Bending resistance and chemically induced moments in membrane bilayers
,”
Biophys. J.
14
(
12
),
923
931
(
1974
).
39.
Evans
,
E. A.
and
Hochmuth
,
R. M.
, “
Membrane viscoelasticity
,”
Biophys. J.
16
(
1
),
1
11
(
1976
).
40.
Ferrone
,
F. A.
,
Hofrichter
,
J.
,
Sunshine
,
H. R.
, and
Eaton
,
W. A.
, “
Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism
,”
Biophys. J.
32
(
1
),
361
380
(
1980
).
41.
Green
,
M. A.
,
Noguchi
,
C. T.
,
Keidan
,
A. J.
,
Marwah
,
S. S.
, and
Stuart
,
J.
, “
Polymerization of sickle cell hemoglobin at arterial oxygen saturation impairs erythrocyte deformability
,”
J. Clin. Invest.
81
(
6
),
1669
1674
(
1988
).
42.
Haire
,
R. N.
,
Tisel
,
W. A.
,
Niazi
,
G.
,
Rosenberg
,
A.
,
Gill
,
S. J.
et al, “
Hemoglobin solubility as a function of fractional oxygen saturation for hemoglobins in polyethylene glycol: A sickle hemoglobin model
,”
Biochem. Biophys. Res. Commun.
101
(
1
),
177
182
(
1981
).
43.
Haydar
,
F.
,
David
,
A.
,
Domenica
,
C. M.
,
Yi-Shan
,
C.
,
Jennifer
,
D.
et al, “
CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia
,”
N. Engl. J. Med.
384
(
3
),
252
260
(
2021
).
44.
Higgins
,
J. M.
,
Eddington
,
D. T.
,
Bhatia
,
S. N.
, and
Mahadevan
,
L.
, “
Statistical dynamics of flowing red blood cells by morphological image processing
,”
PLoS Comput. Biol.
5
(
2
),
e1000288
(
2009
).
45.
Hofrichter
,
J.
,
Ross
,
P. D.
, and
Eaton
,
W. A.
, “
Kinetics and mechanism of deoxyhemoglobin S gelation: A new approach to understanding sickle cell disease
,”
Proc. Natl. Acad. Sci. U. S. A.
71
(
12
),
4864
4868
(
1974
).
46.
Ingram
,
V. M.
, “
A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin
,”
Nature
178
(
4537
),
792
794
(
1956
).
47.
Ingram
,
V. M.
, “
Gene mutations in human haemoglobin: The chemical difference between normal and sickle cell haemoglobin
,”
Nature
180
(
4581
),
326
328
(
1957
).
48.
Itoh
,
T.
,
Chien
,
S.
, and
Usami
,
S.
, “
Deformability measurements on individual sickle cells using a new system with pO2 and temperature control
,”
Blood
79
(
8
),
2141
2147
(
1992
).
49.
Jandl
,
J. H.
,
Simmons
,
R. L.
, and
Castle
,
W. B.
, “
Red cell filtration and the pathogenesis of certain hemolytic anemias
,”
Blood
18
(
2
),
133
148
(
1961
).
50.
Kanter
,
J.
,
Walters
,
M. C.
,
Krishnamurti
,
L.
,
Mapara
,
M. Y.
,
Kwiatkowski
,
J. L.
et al, “
Biologic and clinical efficacy of lentiGlobin for sickle cell disease
,”
N. Engl. J. Med.
386
(
7
),
617
628
(
2022
).
51.
Kato
,
G. J.
,
Piel
,
F. B.
,
Reid
,
C. D.
,
Gaston
,
M. H.
,
Ohene-Frempong
,
K.
et al, “
Sickle cell disease
,”
Nat. Rev. Dis. Primers
4
,
18010
(
2018
).
52.
Kaul
,
D. K.
,
Fabry
,
M. E.
,
Windisch
,
P.
,
Baez
,
S.
, and
Nagel
,
R. L.
, “
Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics
,”
J. Clin. Invest.
72
(
1
),
22
31
(
1983
).
53.
Keidan
,
A. J.
,
Noguchi
,
C. T.
,
Player
,
M.
,
Chalder
,
S. M.
, and
Stuart
,
J.
, “
Erythrocyte heterogeneity in sickle cell disease: Effect of deoxygenation on intracellular polymer formation and rheology of sub‐populations
,”
Br. J. Haematol.
72
(
2
),
254
259
(
1989
).
54.
Kenny
,
M. W.
,
Meakin
,
M.
,
Worthington
,
D. J.
, and
Stuart
,
J.
, “
Erythrocyte deformability in sickle-cell crisis
,”
Br. J. Haematol.
49
(
1
),
103
109
(
1981
).
55.
Kucukal
,
E.
,
Man
,
Y.
,
Hill
,
A.
,
Liu
,
S.
,
Bode
,
A.
et al, “
Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease
,”
Am. J. Hematol.
95
(
11
),
1246
1256
(
2020
).
56.
Kumar
,
A.
and
Graham
,
M. D.
, “
Margination and segregation in confined flows of blood and other multicomponent suspensions
,”
Soft Matter
8
(
41
),
10536
10548
(
2012
).
57.
Lanzkron
,
S.
,
Carroll
,
C. P.
, and
Haywood
,
C.
, “
The burden of emergency department use for sickle-cell disease: An analysis of the national emergency department sample database
,”
Am. J. Hematol.
85
(
10
),
797
799
(
2010
).
58.
Lettre
,
G.
and
Bauer
,
D. E.
, “
Fetal haemoglobin in sickle-cell disease: From genetic epidemiology to new therapeutic strategies
,”
Lancet
387
(
10037
),
2554
2564
(
2016
).
59.
Liem
,
R. I.
, “
Balancing exercise risk and benefits: Lessons learned from sickle cell trait and sickle cell anemia
,”
Hematol. Am. Soc. Hematol. Educ. Program
2018
(
1
),
418
425
(
2018
).
60.
Lu
,
X.
,
Wood
,
D. K.
, and
Higgins
,
J. M.
, “
Deoxygenation reduces sickle cell blood flow at arterial oxygen tension
,”
Biophys. J.
110
(
12
),
2751
2758
(
2016
).
61.
Malfa
,
R.
and
Steinhardt
,
J.
, “
A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin
,”
Biochem. Biophys. Res. Commun.
59
(
3
),
887
893
(
1974
).
62.
Man
,
Y.
,
Kucukal
,
E.
,
An
,
R.
,
Watson
,
Q. D.
,
Bosch
,
J.
et al, “
Microfluidic assessment of red blood cell mediated microvascular occlusion
,”
Lab Chip
20
(
12
),
2086
2099
(
2020
).
63.
Metcalf
,
B.
,
Chuang
,
C.
,
Dufu
,
K.
,
Patel
,
M. P.
,
Silva-Garcia
,
A.
et al, “
Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin
,”
ACS Med. Chem. Lett.
8
(
3
),
321
326
(
2017
).
64.
Moffat
,
K.
and
Gibson
,
Q. H.
, “
The rates of polymerization and depolymerization of sickle cell hemoglobin
,”
Biochem. Biophys. Res. Commun.
61
(
1
),
237
242
(
1974
).
65.
Mozzarelli
,
A.
,
Hofrichter
,
J.
, and
Eaton
,
W. A.
, “
Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo
,”
Science
237
(
4814
),
500
506
(
1987
).
66.
Ngo
,
D.
,
Aygun
,
B.
,
Akinsheye
,
I.
,
Hankins
,
J. S.
,
Bhan
,
I.
et al, “
Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin
,”
Br. J. Haematol.
156
(
2
),
259
264
(
2012
).
67.
Ngo
,
D.
,
Bae
,
H.
,
Steinberg
,
M. H.
,
Sebastiani
,
P.
,
Solovieff
,
N.
et al, “
Fetal hemoglobin in sickle cell anemia: Genetic studies of the Arab-Indian haplotype
,”
Blood Cells, Mol., Dis.
51
(
1
),
22
26
(
2013
).
68.
Nouraie
,
M.
,
Lee
,
J. S.
,
Zhang
,
Y.
,
Kanias
,
T.
,
Zhao
,
X.
et al, “
The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe
,”
Haematologica
98
(
3
),
464
472
(
2013
).
69.
Ohene-Frempong
,
K.
,
Weiner
,
S. J.
,
Sleeper
,
L. A.
,
Miller
,
S. T.
,
Embury
,
S.
et al, “
Cerebrovascular accidents in sickle cell disease: Rates and risk factors
,”
Blood
91
,
288
294
(
1998
).
70.
Partanen
,
M.
,
Kang
,
G.
,
Wang
,
W. C.
,
Krull
,
K.
,
King
,
A. A.
et al, “
Association between hydroxycarbamide exposure and neurocognitive function in adolescents with sickle cell disease
,”
Br. J. Haematol.
189
(
6
),
1192
1203
(
2020
).
71.
Pauling
,
L.
,
Itano
,
H. A.
,
Singer
,
S. J.
, and
Wells
,
I. C.
, “
Sickle cell anemia, a molecular disease
,”
Science
110
(
2865
),
543
548
(
1949
).
72.
Perazzo
,
A.
,
Peng
,
Z.
,
Young
,
Y. N.
,
Feng
,
Z.
,
Wood
,
D. K.
et al, “
The effect of rigid cells on blood viscosity: Linking rheology and sickle cell anemia
,”
Soft Matter
18
(
3
),
554
565
(
2022
).
73.
Pfizer,
Pfizer Voluntarily Withdraws All Lots of Sickle Cell Disease Treatment OXBRYTA® (voxelotor) From Worldwide Markets
(September 25,
2024
), see https://www.pfizer.com/news/press-release/press-release-detail/pfizer-voluntarily-withdraws-all-lots-sickle-cell-disease
74.
Piel
,
F. B.
,
Steinberg
,
M. H.
, and
Rees
,
D. C.
, “
Sickle cell disease
,”
N. Engl. J. Med.
376
(
16
),
1561
1573
(
2017
).
75.
Platt
,
O. S.
,
Orkin
,
S. H.
,
Dover
,
G.
,
Beardsley
,
G. P.
,
Miller
,
B.
et al, “
Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia
,”
J. Clin. Invest.
74
(
2
),
652
656
(
1984
).
76.
Platt
,
O. S.
,
Thorington
,
B. D.
,
Brambilla
,
D. J.
,
Milner
,
P. F.
,
Rosse
,
W. F.
et al, “
Pain in sickle cell disease
,”
N. Engl. J. Med.
325
(
1
),
11
16
(
1991
).
77.
Qiang
,
Y.
,
Liu
,
J.
,
Dao
,
M.
, and
Du
,
E.
, “
In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia
,”
Lab Chip
21
(
18
),
3458
3470
(
2021
).
78.
Qiang
,
Y.
,
Sissoko
,
A.
,
Liu
,
Z. L.
,
Dong
,
T.
,
Zheng
,
F.
et al, “
Microfluidic study of retention and elimination of abnormal red blood cells by human spleen with implications for sickle cell disease
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
6
),
e2217607120
(
2023
).
79.
Ribeil
,
J.-A.
,
Hacein-Bey-Abina
,
S.
,
Payen
,
E.
,
Magnani
,
A.
,
Semeraro
,
M.
et al, “
Gene therapy in a patient with sickle cell disease
,”
N. Engl. J. Med.
376
(
9
),
848
855
(
2017
).
80.
Rodgers
,
D. W.
,
Crepeau
,
R. H.
, and
Edelstein
,
S. J.
, “
Pairings and polarities of the 14 strands in sickle cell hemoglobin fibers
,”
Proc. Natl. Acad. Sci. U. S. A.
84
(
17
),
6157
6161
(
1987
).
81.
Ross
,
P. D.
,
Hofrichter
,
J.
, and
Eaton
,
W. A.
, “
Thermodynamics of gelation of sickle cell deoxyhemoglobin
,”
J. Mol. Biol.
115
(
2
),
111
134
(
1977
).
83.
Samuel
,
R. E.
,
Salmon
,
E. D.
, and
Briehl
,
R. W.
, “
Nucleation and growth of fibres and gel formation in sickle cell haemoglobin
,”
Nature
345
(
6278
),
833
835
(
1990
).
82.
Sharma
,
A.
,
Boelens
,
J.-J.
,
Cancio
,
M.
,
Hankins, J.
S.
,
Bhad
,
P.
et al, “
CRISPR-Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease
,”
N. Engl. J. Med.
389
(
9
),
820
832
(
2023
).
84.
Sherwood
,
J. M.
,
Holmes
,
D.
,
Kaliviotis
,
E.
, and
Balabani
,
S.
, “
Spatial distributions of red blood cells significantly alter local haemodynamics
,”
PLoS One
9
(
6
),
e100473
(
2014
).
85.
Singer
,
K.
and
Fisher
,
B.
, “
Studies on abnormal hemoglobins: V. The distribution of type S (sickle cell) hemoglobin and type F (alkali resistant) hemoglobin within the red cell population in sickle cell anemia
,”
Blood
7
(
12
),
1216
1226
(
1952
).
86.
Singer
,
K.
and
Singer
,
L.
, “
Studies on abnormal hemoglobins: VIII. The gelling phenomenon of sickle cell hemoglobin: Its biologic and diagnostic significance
,”
Blood
8
(
11
),
1008
1023
(
1953
).
87.
Solovieff
,
N.
,
Milton
,
J. N.
,
Hartley
,
S. W.
,
Sherva
,
R.
,
Sebastiani
,
P.
et al, “
Fetal hemoglobin in sickle cell anemia: Genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster
,”
Blood
115
(
9
),
1815
1822
(
2010
).
88.
Song
,
S. H.
,
Kim
,
J. H.
,
Lee
,
J. H.
,
Yun
,
Y. M.
,
Choi
,
D. H.
et al, “
Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke
,”
BMC Neurol.
17
(
1
),
20
(
2017
).
89.
Sorette
,
M. P.
,
Lavenant
,
M. G.
, and
Clark
,
M. R.
, “
Ektacytometric measurement of sickle cell deformability as a continuous function of oxygen tension
,”
Blood
69
(
1
),
316
(
1987
).
90.
Steinberg
,
M. H.
,
Chui
,
D. H. K.
,
Dover
,
G. J.
,
Sebastiani
,
P.
,
Alsultan
,
A.
et al, “
Fetal hemoglobin in sickle cell anemia: A glass half full?
,”
Blood
123
(
4
),
481
(
2014
).
91.
Steinberg
,
M. H.
and
Nagel
,
R. L.
, “
Hemoglobins of the embryo, fetus, and adult
,” in
Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management
, 2nd ed., edited by
Steinberg
,
M. H.
,
Forget
,
B. G.
,
Higgs
,
D. R.
, and
Weatherall
,
D. J.
(
Cambridge University Press
,
2009
), pp.
119
136
.
92.
Sundd
,
P.
,
Gladwin
,
M. T.
, and
Novelli
,
E. M.
Pathophysiology of sickle cell disease
,”
Annu. Rev. Pathol.: Mech. Dis.
14
(
1
),
263
292
(
2019
).
93.
Sunshine
,
H. R.
,
Hofrichter
,
J.
,
Ferrone
,
F. A.
, and
Eaton
,
W. A.
, “
Oxygen binding by sickle cell hemoglobin polymers
,”
J. Mol. Biol.
158
(
2
),
251
273
(
1982
).
94.
Szafraniec
,
H. M.
,
Valdez
,
J. M.
,
Iffrig
,
E.
,
Lam
,
W. A.
,
Higgins
,
J. M.
et al, “
Feature tracking microfluidic analysis reveals differential roles of viscosity and friction in sickle cell blood
,”
Lab Chip
22
,
1565
1575 (
2022
).
95.
Taylor
,
V. I. J. G.
,
Nolan
,
V. G.
,
Mendelsohn
,
L.
,
Kato
,
G. J.
,
Gladwin
,
M. T.
et al, “
Chronic hyper-hemolysis in sickle cell anemia: Association of vascular complications and mortality with less frequent vasoocclusive pain
,”
PLoS One
3
(
5
),
e2095
(
2008
).
96.
Thomson
,
A. M.
,
McHugh
,
T. A.
,
Oron
,
A. P.
,
Teply
,
C.
,
Lonberg
,
N.
et al, “
Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: A systematic analysis from the Global Burden of Disease Study 2021
,”
The Lancet Haematol.
10
(
8
),
e585
e599
(
2023
).
97.
Tsai
,
M.
,
Kita
,
A.
,
Leach
,
J.
,
Rounsevell
,
R.
,
Huang
,
J. N.
et al, “
In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology
,”
J. Clin. Invest.
122
(
1
),
408
418
(
2012
).
98.
Usami
,
S.
,
Chien
,
S.
,
Scholtz
,
P. M.
, and
Bertles
,
J. F.
, “
Effect of deoxygenation on blood rheology in sickle cell disease
,”
Microvasc. Res.
9
(
3
),
324
334
(
1975
).
99.
Valdez
,
J. M.
,
Datta
,
Y. H.
,
Higgins
,
J. M.
, and
Wood
,
D. K.
, “
A microfluidic platform for simultaneous quantification of oxygen-dependent viscosity and shear thinning in sickle cell blood
,”
APL Bioeng.
3
(
4
),
046102
(
2019
).
100.
Vent-Schmidt
,
J.
,
Waltz
,
X.
,
Romana
,
M.
,
Hardy-Dessources
,
M. D.
,
Lemonne
,
N.
et al, “
Blood thixotropy in patients with sickle cell anaemia: Role of haematocrit and red blood cell rheological properties
,”
PLoS One
9
(
12
),
e114412
(
2014
).
101.
Verduzco
,
L. A.
and
Nathan
,
D. G.
, “
Sickle cell disease and stroke
,”
Blood
114
(
25
),
5117
5125
(
2009
).
102.
Vichinsky
,
E.
,
Hoppe
,
C. C.
,
Ataga
,
K. I.
,
Ware
,
R. E.
,
Nduba
,
V.
et al, “
A phase 3 randomized trial of voxelotor in sickle cell disease
,”
N. Engl. J. Med.
381
(
6
),
509
519
(
2019
).
103.
Vunnam
,
N.
,
Hansen
,
S.
,
Williams
,
D. C.
,
Been
,
M. O.
,
Lo
,
C. H.
et al, “
Fluorescence lifetime measurement of prefibrillar sickle hemoglobin oligomers as a platform for drug discovery in sickle cell disease
,”
Biomacromolecules
23
(
9
),
3822
3830
(
2022
).
104.
Wang
,
Y.
,
Garland
,
J. S.
,
Fellah
,
S.
,
Reis
,
M. N.
,
Parsons
,
M. S.
et al, “
Intracranial aneurysms in sickle cell disease are associated with hemodynamic stress and anemia
,”
Blood Adv.
8
(
18
),
4823
4831
(
2024
).
105.
Weatherall
,
M. W.
,
Higgs
,
D. R.
,
Weiss
,
H.
,
Weatherall
,
D. J.
, and
Serjeant
,
G. R.
, “
Phenotype/genotype relationships in sickle cell disease: A pilot twin study
,”
Clin. Lab. Haematol.
27
(
6
),
384
390
(
2005
).
106.
Williams
,
D. C.
and
Wood
,
D. K.
, “
High-throughput quantification of red blood cell deformability and oxygen saturation to probe mechanisms of sickle cell disease
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
48
),
e2313755120
(
2023
).
107.
Wood
,
D. K.
,
Soriano
,
A.
,
Mahadevan
,
L.
,
Higgins
,
J. M.
, and
Bhatia
,
S. N.
, “
A biophysical indicator of vaso-occlusive risk in sickle cell disease
,”
Sci. Transl. Med.
4
(
123
),
123ra26
(
2012
).
108.
Yawn
,
B. P.
,
Buchanan
,
G. R.
,
Afenyi-Annan
,
A. N.
,
Ballas
,
S. K.
,
Hassell
,
K. L.
et al, “
Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members
,”
JAMA
312
(
10
),
1033
1048
(
2014
).
109.
Yeom
,
E.
,
Kang
,
Y. J.
, and
Lee
,
S.-J.
Changes in velocity profile according to blood viscosity in a microchannel
,”
Biomicrofluidics
8
(
3
),
034110
(
2014
).
110.
Závodszky
,
G.
,
Van Rooij
,
B.
,
Czaja
,
B.
,
Azizi
,
V.
,
De Kanter
,
D.
et al, “
Red blood cell and platelet diffusivity and margination in the presence of cross-stream gradients in blood flows
,”
Phys. Fluids
31
(
3
),
031903
(
2019
).
111.
Zheng
,
Y.
,
Gossett
,
J. M.
,
Chen
,
P. L.
,
Barton
,
M.
,
Ryan
,
M.
et al, “
Proinflammatory state promotes red blood cell alloimmunization in pediatric patients with sickle cell disease
,”
Blood Adv.
7
(
17
),
4799
4808
(
2023
).
You do not currently have access to this content.