Living cells can perform incredible tasks that man-made micro/nano-sized robots have not yet been able to accomplish. One example is that white blood cells can sense and move to the site of pathogen attack within minutes. The robustness and precision of cellular functions have been perfected through billions of years of evolution. In this context, we ask the question whether cells follow a set of physical principles to sense, adapt, and migrate. Microfluidics has emerged as an enabling technology for recreating well-defined cellular environment for cell migration studies, and its ability to follow single cell dynamics allows for the results to be amenable for theoretical modeling. In this review, we focus on the development of microfluidic platforms for recreating cellular biophysical (e.g., mechanical stress) and biochemical (e.g., nutrients and cytokines) environments for cell migration studies in 3D. We summarize the basic principles that cells (including bacteria, algal, and mammalian cells) use to respond to chemical gradients learned from microfluidic systems. We also discuss about novel biological insights gained from studies of cell migration under biophysical cues and the need for further quantitative studies of cell function under well-controlled biophysical environments in the future.

1.
J. M.
Muncie
and
V. M.
Weaver
, “
The physical and biochemical properties of the extracellular matrix regulate cell fate
,”
Curr. Top. Dev. Biol.
130
,
1
37
(
2018
).
2.
M. J.
Bissell
and
W. C.
Hines
, “
Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression
,”
Nat. Med.
17
(
3
),
320
329
(
2011
).
3.
H.
Kono
and
K. L.
Rock
, “
How dying cells alert the immune system to danger
,”
Nat. Rev. Immunol.
8
(
4
),
279
289
(
2008
).
4.
A.
Mantovani
et al, “
Neutrophils in the activation and regulation of innate and adaptive immunity
,”
Nat. Rev. Immunol.
11
(
8
),
519
531
(
2011
).
5.
A. D.
Luster
,
R.
Alon
, and
U. H.
von Andrian
, “
Immune cell migration in inflammation: Present and future therapeutic targets
,”
Nat. Immunol.
6
(
12
),
1182
1190
(
2005
).
6.
P.
Herzmark
et al, “
Bound attractant at the leading vs. the trailing edge determines chemotactic prowess
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
33
),
13349
13354
(
2007
).
7.
B. J.
Kim
et al, “
Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model
,”
PLoS One
8
(
7
),
e68422
(
2013
).
8.
A. J.
Engler
et al, “
Matrix elasticity directs stem cell lineage specification.
,”
Cell
126
(
4
),
677
689
(
2006
).
9.
M. S.
Hall
et al, “
Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
49
),
14043
14048
(
2016
).
10.
B. J.
Kim
and
M.
Wu
, “
Microfluidics for mammalian cell chemotaxis
,”
Ann. Biomed. Eng.
40
(
6
),
1316
1327
(
2012
).
11.
Y. L.
Huang
,
J. E.
Segall
, and
M.
Wu
, “
Microfluidic modeling of the biophysical microenvironment in tumor cell invasion
,”
Lab Chip
17
(
19
),
3221
3233
(
2017
).
12.
M.
Wu
and
M. A.
Swartz
, “
Modeling tumor microenvironments in vitro
,”
J. Biomech. Eng.
136
(
2
),
021011
(
2014
).
13.
M. J.
Paszek
et al, “
Tensional homeostasis and the malignant phenotype
,”
Cancer Cell
8
(
3
),
241
254
(
2005
).
14.
M. D.
Turner
et al, “
Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease
,”
Biochim. Biophys. Acta
1843
(
11
),
2563
2582
(
2014
).
15.
E.
Kolaczkowska
and
P.
Kubes
, “
Neutrophil recruitment and function in health and inflammation
,”
Nat. Rev. Immunol.
13
(
3
),
159
175
(
2013
).
16.
A.
Luster
, “
Chemotaxis: Role in immune response
,” in
eLS
(
Wiley
,
2001
).
17.
L.
Schneider
et al, “
Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts
,”
Cell. Physiol. Biochem.
25
(
2–3
),
279
292
(
2010
).
18.
H.
Mensing
, “
[Importance of fibroblast chemotaxis in wound healing and tumor cell evasion]
,”
Klin Wochenschr
63
(
4
),
145
151
(
1985
).
19.
D.
Dormann
and
C. J.
Weijer
, “
Chemotactic cell movement during development
,”
Curr. Opin. Genet. Dev.
13
(
4
),
358
364
(
2003
).
20.
F.
Balkwill
, “
Cancer and the chemokine network
,”
Nat. Rev. Cancer
4
(
7
),
540
550
(
2004
).
21.
E. T.
Roussos
,
J. S.
Condeelis
, and
A.
Patsialou
, “
Chemotaxis in cancer
,”
Nat. Rev. Cancer
11
(
8
),
573
587
(
2011
).
22.
J.
Condeelis
,
R. H.
Singer
, and
J. E.
Segall
, “
THE GREAT ESCAPE: When cancer cells hijack the genes for chemotaxis and motility
,”
Annu. Rev. Cell Dev. Biol.
21
(
1
),
695
718
(
2005
).
23.
U.
Haessler
et al, “
Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
14
),
5614
5619
(
2011
).
24.
G.
Helmlinger
et al, “
Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation
,”
Nat. Med.
3
(
2
),
177
182
(
1997
).
25.
A.
Müller
et al, “
Involvement of chemokine receptors in breast cancer metastasis
,”
Nature
410
(
6824
),
50
56
(
2001
).
26.
J.
Condeelis
and
J. W.
Pollard
, “
Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis
,”
Cell
124
(
2
),
263
266
(
2006
).
27.
J. D.
Shields
et al, “
Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling
,”
Cancer Cell
11
(
6
),
526
538
(
2007
).
28.
K. R.
Levental
et al, “
Matrix crosslinking forces tumor progression by enhancing integrin signaling
,”
Cell
139
(
5
),
891
906
(
2009
).
29.
H. M.
Yu
,
J. K.
Mouw
, and
V. M.
Weaver
, “
Forcing form and function: Biomechanical regulation of tumor evolution
,”
Trends Cell Biol.
21
(
1
),
47
56
(
2011
).
30.
T.
Lämmermann
et al, “
Rapid leukocyte migration by integrin-independent flowing and squeezing
,”
Nature
453
(
7191
),
51
55
(
2008
).
31.
K.
Wolf
et al, “
Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis
,”
J. Cell Biol.
160
(
2
),
267
277
(
2003
).
32.
P.
Friedl
and
K.
Wolf
, “
Tumour-cell invasion and migration: Diversity and escape mechanisms
,”
Nat. Rev. Cancer
3
(
5
),
362
374
(
2003
).
33.
M.-Z.
Jin
and
W.-L.
Jin
, “
The updated landscape of tumor microenvironment and drug repurposing
,”
Signal Transduction Targeted Ther.
5
(
1
),
166
(
2020
).
34.
J.
Steinwachs
et al, “
Three-dimensional force microscopy of cells in biopolymer networks
,”
Nat. Methods
13
(
2
),
171
(
2016
).
35.
W. R.
Legant
et al, “
Measurement of mechanical tractions exerted by cells in three-dimensional matrices
,”
Nat. Methods
7
(
12
),
969
971
(
2010
).
36.
T. M.
Koch
et al, “
3D traction forces in cancer cell invasion
,”
PLoS One
7
(
3
),
e33476
(
2012
).
37.
M. S.
Hall
et al, “
Toward single cell traction microscopy within 3D collagen matrices
,”
Exp. Cell Res.
319
(
16
),
2396
2408
(
2013
).
38.
A.
Lesman
et al, “
Contractile forces regulate cell division in three-dimensional environments
,”
J. Cell Biol.
205
(
2
),
155
162
(
2014
).
39.
K.
Wolf
et al, “
Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force
,”
J. Cell Biol.
201
(
7
),
1069
1084
(
2013
).
40.
A.
Pathak
and
S.
Kumar
, “
Independent regulation of tumor cell migration by matrix stiffness and confinement
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
26
),
10334
10339
(
2012
).
41.
Y. J.
Suh
et al, “
Glycation of collagen matrices promotes breast tumor cell invasion
,”
Integr. Biol.
11
(
3
),
109
117
(
2019
).
42.
M. V.
Plikus
et al, “
Fibroblasts: Origins, definitions, and functions in health and disease
,”
Cell
184
(
15
),
3852
3872
(
2021
).
43.
Q.
Ping
et al, “
Cancer-associated fibroblasts: Overview, progress, challenges, and directions
,”
Cancer Gene Ther.
28
(
9
),
984
999
(
2021
).
44.
A.
Glentis
et al, “
Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane
,”
Nat. Commun.
8
(
1
),
924
(
2017
).
45.
I.
Hwang
et al, “
Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients
,”
J. Transl. Med.
18
(
1
),
443
(
2020
).
46.
J.
Margetts
et al, “
Neutrophils: Driving progression and poor prognosis in hepatocellular carcinoma?
,”
Br. J. Cancer
118
(
2
),
248
257
(
2018
).
47.
D. A.
Quigley
and
V.
Kristensen
, “
Predicting prognosis and therapeutic response from interactions between lymphocytes and tumor cells
,”
Mol. Oncol.
9
(
10
),
2054
2062
(
2015
).
48.
S. J.
Gaudino
and
P.
Kumar
, “
Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis
,”
Front. Immunol.
10
,
360
(
2019
).
49.
Y.
Wang
et al, “
Dendritic cell biology and its role in tumor immunotherapy
,”
J. Hematol. Oncol.
13
(
1
),
107
(
2020
).
50.
C.
Szeto
et al, “
TCR recognition of peptide–MHC-I: Rule makers and breakers
,”
Int. J. Mol. Sci.
22
(
1
),
68
(
2020
).
51.
J.
Rosenberg
and
J.
Huang
, “
CD8+ T cells and NK cells: Parallel and complementary soldiers of immunotherapy
,”
Curr. Opin. Chem. Eng.
19
,
9
20
(
2018
).
52.
N. K.
Wolf
,
D. U.
Kissiov
, and
D. H.
Raulet
, “
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy
,”
Nat. Rev. Immunol.
23
(
2
),
90
105
(
2023
).
53.
S.
Ghaffari
and
N.
Rezaei
, “
Eosinophils in the tumor microenvironment: Implications for cancer immunotherapy
,”
J. Transl. Med.
21
(
1
),
551
(
2023
).
54.
M. A.
Giese
,
L. E.
Hind
, and
A.
Huttenlocher
, “
Neutrophil plasticity in the tumor microenvironment
,”
Blood
133
(
20
),
2159
2167
(
2019
).
55.
D.
Entenberg
,
M. H.
Oktay
, and
J. S.
Condeelis
, “
Intravital imaging to study cancer progression and metastasis
,”
Nat. Rev. Cancer
23
(
1
),
25
42
(
2023
).
56.
M. P.
Marciel
and
P. R.
Hoffmann
, “
Chapter three: Selenoproteins and metastasis
,” in
Advances in Cancer Research
, edited by
K. D.
Tew
and
F.
Galli
(
Academic Press
,
2017
), pp.
85
108
.
57.
X.
Zhou
,
X.
Liu
, and
L.
Huang
, “
Macrophage-mediated tumor cell phagocytosis: Opportunity for nanomedicine intervention
,”
Adv. Funct. Mater.
31
(
5
),
2006220
(
2021
).
58.
P.
Robson
, “
Metastatic spinal cord compression: A rare but important complication of cancer
,”
Clin. Med.
14
(
5
),
542
545
(
2014
).
59.
G.
Seano
et al, “
Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium
,”
Nat. Biomed. Eng.
3
(
3
),
230
245
(
2019
).
60.
T.
Natroshvili
et al, “
Rare tumors causing median nerve compression in adults—A narrative review
,”
Arch. Plast. Surg.
49
(
5
),
656
662
(
2022
).
61.
D.
Lee
et al, “
Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology
,”
Lab Chip
18
(
14
),
2077
2086
(
2018
).
62.
T.
Stylianopoulos
et al, “
Coevolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse
,”
Cancer Res.
73
(
13
),
3833
3841
(
2013
).
63.
M. J.
Paszek
and
V. M.
Weaver
, “
The tension mounts: Mechanics meets morphogenesis and malignancy
,”
J. Mammary Gland Biol. Neoplasia
9
(
4
),
325
342
(
2004
).
64.
I.
Constantinou
and
E. E.
Bastounis
, “
Cell-stretching devices: Advances and challenges in biomedical research and live-cell imaging
,”
Trends Biotechnol.
41
(
7
),
939
950
(
2023
).
65.
Y. L.
Huang
et al, “
Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion
,”
Sci. Rep.
10
(
1
),
9648
(
2020
).
66.
Y. L.
Huang
et al, “
Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model
,”
Integr. Biol.
7
(
11
),
1402
1411
(
2015
).
67.
C. R.
White
and
J. A.
Frangos
, “
The shear stress of it all: The cell membrane and mechanochemical transduction
,”
Philos. Trans. R. Soc. B
362
(
1484
),
1459
1467
(
2007
).
68.
V.
Vinader
et al, “
An agarose spot chemotaxis assay for chemokine receptor antagonists
,”
J. Pharmacol. Toxicol. Methods
64
(
3
),
213
216
(
2011
).
69.
S. H.
Zigmond
, “
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors.
,”
J. Cell Biol.
75
(
2
),
606
(
1977
).
70.
D.
Zicha
,
G. A.
Dunn
, and
A. F.
Brown
, “
A new direct-viewing chemotaxis chamber
,”
J. Cell Sci.
99
(
4
),
769
(
1991
).
71.
S.
Boyden
, “
The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes
,”
J. Exp. Med.
115
(
3
),
453
466
(
1962
).
72.
A. J.
Muinonen-Martin
et al, “
An improved chamber for direct visualisation of chemotaxis
,”
PLoS One
5
(
12
),
e15309
(
2010
).
73.
V.
Biswenger
et al, “
Characterization of EGF-guided MDA-MB-231 cell chemotaxis in vitro using a physiological and highly sensitive assay system
,”
PLoS One
13
(
9
),
e0203040
(
2018
).
74.
N. L.
Jeon
et al, “
Generation of solution and surface gradients using microfluidic systems
,”
Langmuir
16
(
22
),
8311
8316
(
2000
).
75.
F.
Lin
and
E. C.
Butcher
, “
T cell chemotaxis a simple microfluidic device
,”
Lab Chip
6
(
11
),
1462
1469
(
2006
).
76.
B. G.
Ricart
et al, “
Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4
,”
J. Immunol.
186
(
1
),
53
61
(
2011
).
77.
N.
Li Jeon
et al, “
Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device
,”
Nat. Biotechnol.
20
(
8
),
826
830
(
2002
).
78.
S. J.
Wang
et al, “
Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis
,”
Exp. Cell Res.
300
(
1
),
180
189
(
2004
).
79.
V. V.
Abhyankar
et al, “
Characterization of a membrane-based gradient generator for use in cell-signaling studies
,”
Lab Chip
6
(
3
),
389
393
(
2006
).
80.
B. J.
Kim
et al, “
Oxygen tension and riboflavin gradients cooperatively regulate the migration of Shewanella oneidensis MR-1 revealed by a hydrogel-based microfluidic device
,”
Front. Microbiol.
7
,
1438
(
2016
).
81.
B. J.
Kim
et al, “
An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients
,”
Lab Chip
15
(
18
),
3687
3694
(
2015
).
82.
J.
Diao
et al, “
A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis
,”
Lab Chip
6
(
3
),
381
388
(
2006
).
83.
S.-Y.
Cheng
et al, “
A hydrogel-based microfluidic device for the studies of directed cell migration
,”
Lab Chip
7
(
6
),
763
769
(
2007
).
84.
Y. V.
Kalinin
et al, “
Logarithmic sensing in Escherichia coli bacterial chemotaxis
,”
Biophys. J.
96
(
6
),
2439
2448
(
2009
).
85.
Y.
Kalinin
et al, “
Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio
,”
J. Bacteriol.
192
(
7
),
1796
1800
(
2010
).
86.
K.
Wong
et al, “
Assessing neural stem cell motility using an agarose gel-based microfluidic device
,”
J. Vis. Exp.
11
(
12
),
674
(
2008
).
87.
U.
Haessler
et al, “
An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies
,”
Biomed. Microdevices
11
(
4
),
827
835
(
2009
).
88.
H.
Chang
et al, “
Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device
,”
PLoS One
8
(
4
),
e60587
(
2013
).
89.
M. M.
Salek
et al, “
Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity
,”
Nat. Commun.
10
(
1
),
1877
(
2019
).
90.
J.
Bai
et al, “
A novel 3D vascular assay for evaluating angiogenesis across porous membranes
,”
Biomaterials
268
,
120592
(
2021
).
91.
F.
Liu
et al, “
An array microhabitat device with dual gradients revealed synergistic roles of nitrogen and phosphorous in the growth of microalgae
,”
Lab Chip
20
(
4
),
798
805
(
2020
).
92.
A.
Shamloo
and
S. C.
Heilshorn
, “
Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients
,”
Lab Chip
10
(
22
),
3061
3068
(
2010
).
93.
A.
Shamloo
et al, “
Endothelial cell polarization and chemotaxis in a microfluidic device
,”
Lab Chip
8
(
8
),
1292
1299
(
2008
).
94.
J. M.
Ayuso
et al, “
Study of the chemotactic response of multicellular spheroids in a microfluidic device
,”
PLoS One
10
(
10
),
e0139515
(
2015
).
95.
J.
Song
et al, “
A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting
,”
Sci. Rep.
8
(
1
),
6394
(
2018
).
96.
B. A.
Camley
, “
Collective gradient sensing and chemotaxis: Modeling and recent developments
,”
J. Phys.
30
(
22
),
223001
(
2018
).
97.
J.
Varennes
,
B.
Han
, and
A.
Mugler
, “
Collective chemotaxis through noisy multicellular gradient sensing
,”
Biophys. J.
111
(
3
),
640
649
(
2016
).
98.
A.
Gopinathan
and
N. S.
Gov
, “
Cell cluster migration: Connecting experiments with physical models
,”
Semin. Cell Dev. Biol.
93
,
77
86
(
2019
).
99.
V. E.
Debets
,
L. M. C.
Janssen
, and
C.
Storm
, “
Enhanced persistence and collective migration in cooperatively aligning cell clusters
,”
Biophys. J.
120
(
8
),
1483
1497
(
2021
).
100.
D.
Ellison
et al, “
Cell–cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
6
),
E679
E688
(
2016
).
101.
P. Y.
Hwang
et al, “
Randomly distributed K14+ breast tumor cells polarize to the leading edge and guide collective migration in response to chemical and mechanical environmental cues
,”
Cancer Res.
79
(
8
),
1899
1912
(
2019
).
102.
Y. J.
Suh
et al, “
Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device
,”
Phys. Biol.
19
(
3
),
036002
(
2022
).
103.
H.
Dandia
,
K.
Makkad
, and
P.
Tayalia
, “
Glycated collagen - a 3D matrix system to study pathological cell behavior
,”
Biomater. Sci.
7
(
8
),
3480
3488
(
2019
).
104.
B. C. H.
Cheung
et al, “
CD44 and β1-integrin are both engaged in cell traction force generation in hyaluronic acid-rich extracellular matrices
,” bioRxiv (
2023
).
105.
A. L.
Wishart
et al, “
Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis
,”
Sci. Adv.
6
(
43
),
eabc3175
(
2020
).
106.
P. M.
Davidson
et al, “
Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments
,”
Integr. Biol.
7
(
12
),
1534
1546
(
2015
).
107.
C. M.
Denais
et al, “
Nuclear envelope rupture and repair during cancer cell migration
,”
Science
352
(
6283
),
353
358
(
2016
).
108.
E. S.
Bell
et al, “
Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer
,”
Oncogene
41
(
36
),
4211
4230
(
2022
).
109.
P. M.
Davidson
et al, “
Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments
,”
Cell. Mol. Bioeng.
7
(
3
),
293
306
(
2014
).
110.
J.
Keys
et al, “
Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior
,” bioRxiv (
2022
).
111.
E.
Desvignes
et al, “
Nanoscale forces during confined cell migration
,”
Nano Lett.
18
(
10
),
6326
6333
(
2018
).
112.
M.
Sameni
,
K.
Moin
, and
B. F.
Sloane
, “
Imaging proteolysis by living human breast cancer cells
,”
Neoplasia
2
(
6
),
496
504
(
2000
).
113.
L.
Bui
et al, “
Microchannel device for proteomic analysis of migrating cancer cells
,”
Biomed. Phys. Eng. Express
4
(
6
),
065026
(
2018
).
114.
A. W.
Holle
et al, “
Cancer cells invade confined microchannels via a self-directed mesenchymal-to-amoeboid transition
,”
Nano Lett.
19
(
4
),
2280
2290
(
2019
).
115.
R.
Riahi
et al, “
A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer
,”
Int. J. Oncol.
44
(
6
),
1870
1878
(
2014
).
116.
V.
Todorovski
et al, “
Confined environments induce polarized paraspeckle condensates
,”
Commun. Biol.
6
(
1
),
145
(
2023
).
117.
M.
Wei
et al, “
High-throughput characterization of cell adhesion strength using long-channel constriction-based microfluidics
,”
ACS Sens.
6
(
8
),
2838
2844
(
2021
).
118.
D.
Ma
et al, “
Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement
,”
Biomicrofluidics
12
(
2
),
024118
(
2018
).
119.
M.
Mak
,
C. A.
Reinhart-King
, and
D.
Erickson
, “
Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics
,”
PLoS One
6
(
6
),
e20825
(
2011
).
120.
M.
Wang
et al, “
Microchannel stiffness and confinement jointly induce the mesenchymal-amoeboid transition of cancer cell migration
,”
Nano Lett.
19
(
9
),
5949
5958
(
2019
).
121.
Y.-C.
Lu
et al, “
Physical confinement induces malignant transformation in mammary epithelial cells
,”
Biomaterials
217
,
119307
(
2019
).
122.
H.
Zhang
et al, “
Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics
,”
Anal. Chem.
84
(
8
),
3599
3606
(
2012
).
123.
H. T.
Nia
et al, “
Solid stress and elastic energy as measures of tumour mechanopathology
,”
Nat. Biomed. Eng.
1
(
1
),
0004
(
2016
).
124.
M.
Ao
et al, “
Stretching fibroblasts remodels fibronectin and alters cancer cell migration
,”
Sci. Rep.
5
,
8334
(
2015
).
125.
Y.
Cui
et al, “
Cyclic stretching of soft substrates induces spreading and growth
,”
Nat. Commun.
6
,
6333
(
2015
).
126.
C.
Moraes
et al, “
Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation
,”
Lab Chip
10
(
2
),
227
234
(
2009
).
127.
F.
Sorba
et al, “
Integrated elastomer-based device for measuring the mechanics of adherent cell monolayers
,”
Lab Chip
19
(
12
),
2138
2146
(
2019
).
128.
D.
Tremblay
et al, “
A microscale anisotropic biaxial cell stretching device for applications in mechanobiology
,”
Biotechnol. Lett.
36
(
3
),
657
665
(
2014
).
129.
W.
Zheng
et al, “
A microfluidic flow-stretch chip for investigating blood vessel biomechanics
,”
Lab Chip
12
(
18
),
3441
3450
(
2012
).
130.
D.
Huh
et al, “
Reconstituting organ-level lung functions on a chip
,”
Science
328
(
5986
),
1662
1668
(
2010
).
131.
Y.
He
et al, “
A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer
,”
Biofabrication
12
(
4
),
045032
(
2020
).
132.
T.
Boudou
et al, “
A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues
,”
Tissue Eng., Part A
18
(
9–10
),
910
919
(
2012
).
133.
J. T.
Hinson
et al, “
Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy
,”
Science
349
(
6251
),
982
986
(
2015
).
134.
P.
Bandaru
et al, “
Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-mediated mechanosensing
,”
Small
16
(
25
),
2001837
(
2020
).
135.
K. K. Y.
Ho
,
L. M.
Lee
, and
A. P.
Liu
, “
Mechanically activated artificial cell by using microfluidics
,”
Sci. Rep.
6
(
1
),
32912
(
2016
).
136.
K. K. Y.
Ho
et al, “
Advanced microfluidic device designed for cyclic compression of single adherent cells
,”
Front. Bioeng. Biotechnol.
6
,
148
(
2018
).
137.
S.
Hosmane
et al, “
Valve-based microfluidic compression platform: Single axon injury and regrowth
,”
Lab Chip
11
(
22
),
3888
3895
(
2011
).
138.
H.-Y.
Hsieh
et al, “
Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment
,”
Lab Chip
14
(
3
),
482
493
(
2014
).
139.
Y. C.
Kim
et al, “
Microfluidic biomechanical device for compressive cell stimulation and lysis
,”
Sens. Actuators, B
128
(
1
),
108
116
(
2007
).
140.
S.
Onal
,
M. M.
Alkaisi
, and
V.
Nock
, “
A flexible microdevice for mechanical cell stimulation and compression in microfluidic settings
,”
Front. Phys.
9
,
654918
(
2021
).
141.
S.
Onal
,
M. M.
Alkaisi
, and
V.
Nock
, “
Application of sequential cyclic compression on cancer cells in a flexible microdevice
,”
PLoS One
18
(
1
),
e0279896
(
2023
).
142.
C. A.
Paggi
et al, “
Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage
,”
Sens. Actuators, B
315
,
127917
(
2020
).
143.
F.
Si
et al, “
Bacterial growth and form under mechanical compression
,”
Sci. Rep.
5
(
1
),
11367
(
2015
).
144.
T.
Yokokura
et al, “
Method for measuring Young's modulus of cells using a cell compression microdevice
,”
Int. J. Eng. Sci.
114
,
41
48
(
2017
).
145.
Y.
Takayama
et al, “
Developing a MEMS device with built-in microfluidics for biophysical single cell characterization
,”
Micromachines
9
(
6
),
275
(
2018
).
146.
A. Z.
Shorr
et al, “
High-throughput mechanotransduction in Drosophila embryos with mesofluidics
,”
Lab Chip
19
(
7
),
1141
1152
(
2019
).
147.
M.
Pisano
et al, “
An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion
,”
Integr. Biol.
7
(
5
),
525
533
(
2015
).
148.
D.-H. T.
Nguyen
et al, “
A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling
,”
Sci. Adv.
5
(
8
),
eaav6789
(
2019
).
149.
X.
Li
et al, “
Evaluation of 1-mm-diameter endothelialized dense collagen tubes in vascular microsurgery
,”
J. Biomed. Mater. Res., Part B
108
(
6
),
2441
2449
(
2020
).
150.
S.
Zhang
et al, “
Interstitial flow promotes the formation of functional microvascular networks in vitro through upregulation of matrix metalloproteinase-2
,”
Adv. Funct. Mater.
32
(
43
),
2206767
(
2022
).
151.
R.
Li
et al, “
Interstitial flow promotes macrophage polarization toward an M2 phenotype
,”
Mol. Biol. Cell
29
(
16
),
1927
1940
(
2018
).
152.
W. J.
Polacheck
,
J. L.
Charest
, and
R. D.
Kamm
, “
Interstitial flow influences direction of tumor cell migration through competing mechanisms
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
27
),
11115
11120
(
2011
).
153.
W. J.
Polacheck
et al, “
Mechanotransduction of fluid stresses governs 3D cell migration
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
7
),
2447
2452
(
2014
).
154.
C.-K.
Tung
et al, “
Emergence of upstream swimming via a hydrodynamic transition
,”
Phys. Rev. Lett.
114
(
10
),
108102
(
2015
).
155.
T.
Brotto
et al, “
Hydrodynamics of confined active fluids
,”
Phys. Rev. Lett.
110
(
3
),
038101
(
2013
).
156.
P.
Isermann
and
J.
Lammerding
, “
Consequences of a tight squeeze: Nuclear envelope rupture and repair
,”
Nucleus
8
(
3
),
268
274
(
2017
).
157.
F.
Liu
et al, “
Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform
,” arXiv:2307.02646v1 (
2023
).
You do not currently have access to this content.