The natural habitat of most cells consists of complex and disordered 3D microenvironments with spatiotemporally dynamic material properties. However, prevalent methods of in vitro culture study cells under poorly biomimetic 2D confinement or homogeneous conditions that often neglect critical topographical cues and mechanical stimuli. It has also become increasingly apparent that cells in a 3D conformation exhibit dramatically altered morphological and phenotypical states. In response, efforts toward designing biomaterial platforms for 3D cell culture have taken centerstage over the past few decades. Herein, we present a broad overview of biomaterials for 3D cell culture and 3D bioprinting, spanning both monolithic and granular systems. We first critically evaluate conventional monolithic hydrogel networks, with an emphasis on specific experimental requirements. Building on this, we document the recent emergence of microgel-based 3D growth media as a promising biomaterial platform enabling interrogation of cells within porous and granular scaffolds. We also explore how jammed microgel systems have been leveraged to spatially design and manipulate cellular structures using 3D bioprinting. The advent of these techniques heralds an unprecedented ability to experimentally model complex physiological niches, with important implications for tissue bioengineering and biomedical applications.

1.
B. M.
Baker
and
C. S.
Chen
, “
Deconstructing the third dimension: How 3D culture microenvironments alter cellular cues
,”
J. Cell Sci.
125
,
3015
3024
(
2012
).
2.
K.
Duval
et al, “
Modeling physiological events in 2D vs. 3D cell culture
,”
Physiology
32
,
266
277
(
2017
).
3.
G. D.
Kusuma
et al, “
Effect of 2D and 3D culture microenvironments on mesenchymal stem cell-derived extracellular vesicles potencies
,”
Front. Cell. Dev. Biol.
10
,
819726
(
2022
).
4.
A. J.
Engler
,
S.
Sen
,
H. L.
Sweeney
, and
D. E.
Discher
, “
Matrix elasticity directs stem cell lineage specification
,”
Cell
126
,
677
689
(
2006
).
5.
A. K.
Simi
,
M. F.
Pang
, and
C. M.
Nelson
, “
Extracellular matrix stiffness exists in a feedback loop that drives tumor progression
,”
Adv. Exp. Med. Biol.
1092
,
57
67
(
2018
).
6.
D. E.
Discher
,
P.
Janmey
, and
Y. L.
Wang
, “
Tissue cells feel and respond to the stiffness of their substrate
,”
Science
310
,
1139
1143
(
2005
).
7.
R. J.
Pelham
, Jr.
and
Y.
Wang
, “
Cell locomotion and focal adhesions are regulated by substrate flexibility
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
13661
13665
(
1997
).
8.
O. W.
Petersen
,
L.
Rønnov-Jessen
,
A. R.
Howlett
, and
M. J.
Bissell
, “
Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells
,”
Proc. Natl. Acad. Sci. U. S. A.
89
,
9064
9068
(
1992
).
9.
R. G.
Wells
, “
The role of matrix stiffness in regulating cell behavior
,”
Hepatology
47
,
1394
1400
(
2008
).
10.
O.
Chaudhuri
,
J.
Cooper-White
,
P. A.
Janmey
,
D. J.
Mooney
, and
V. B.
Shenoy
, “
Effects of extracellular matrix viscoelasticity on cellular behaviour
,”
Nature
584
,
535
546
(
2020
).
11.
C. F.
Guimarães
,
L.
Gasperini
,
A. P.
Marques
, and
R. L.
Reis
, “
The stiffness of living tissues and its implications for tissue engineering
,”
Nat. Rev. Mater.
5
,
351
370
(
2020
).
12.
M.
Ahn
,
W.-W.
Cho
,
B. S.
Kim
, and
D.-W.
Cho
, “
Engineering densely packed adipose tissue via environmentally controlled in‐bath 3D bioprinting
,”
Adv. Funct. Mater.
32
(
28
),
2200203
(
2022
).
13.
M.
Patel
,
S.
Ahn
, and
W. G.
Koh
, “
Topographical pattern for neuronal tissue engineering
,”
J. Ind. Eng. Chem.
114
,
19
32
(
2022
).
14.
S. B.
Eickhoff
,
R. T.
Constable
, and
B. T. T.
Yeo
, “
Topographic organization of the cerebral cortex and brain cartography
,”
Neuroimage
170
,
332
(
2018
).
15.
C. F.
Lotfi
,
P. J. L.
Kremer
,
B. D. S.
Passaia
, and
I. P.
Cavalcante
, “
The human adrenal cortex: Growth control and disorders
,”
Clinics
73
,
e473s
(
2018
).
16.
M. I.
Townsley
, “
Structure and composition of pulmonary arteries, capillaries and veins
,”
Compr. Physiol.
2
,
675
(
2012
).
17.
D.
Banerjee
,
P. K.
Das
, and
J.
Mukherjee
, “
Muscular system
,”
Textbook of Veterinary Physiology
(
Elsevier
,
2023
), pp.
235
264
.
18.
M.
Golob
,
R. L.
Moss
, and
N. C.
Chesler
, “
Cardiac tissue structure, properties, and performance: A materials science perspective
,”
Ann. Biomed. Eng.
42
,
2003
(
2014
).
19.
Q.
Zhou
et al, “
Red blood cell dynamics in extravascular biological tissues modelled as canonical disordered porous media
,”
Interface Focus
12
,
20220037
(
2022
).
20.
T.
Bhattacharjee
and
S. S.
Datta
, “
Confinement and activity regulate bacterial motion in porous media
,”
Soft Matter
15
,
9920
9930
(
2019
).
21.
A.
Martinez-Calvo
et al, “
Morphological instability and roughening of growing 3D bacterial colonies
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2208019119
(
2022
).
22.
C.
Frantz
,
K. M.
Stewart
, and
V. M.
Weaver
, “
The extracellular matrix at a glance
,”
J. Cell Sci.
123
,
4195
4200
(
2010
).
23.
M.
Sreepadmanabh
and
B. J.
Toley
, “
Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics
,”
Biotechnol. Adv.
36
,
1094
1110
(
2018
).
24.
J.
Winkler
,
A.
Abisoye-Ogunniyan
,
K. J.
Metcalf
, and
Z.
Werb
, “
Concepts of extracellular matrix remodelling in tumour progression and metastasis
,”
Nat. Commun.
11
,
5120
(
2020
).
25.
B. G.
Kim
et al, “
Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer
,”
Commun. Biol.
2
,
313
(
2019
).
26.
K. Y.
DeLeon-Pennell
,
T. H.
Barker
, and
M. L.
Lindsey
, “
Fibroblasts: The arbiters of extracellular matrix remodeling
,”
Matrix Biol.
91–92
,
1
7
(
2020
).
27.
M. P.
Murphy
and
H.
Levine
, “
Alzheimer's disease and the β-amyloid peptide
,”
J. Alzheimer's Dis.
19
,
311
(
2010
).
28.
G.
Kim
,
J. H.
Cole
,
A. L.
Boskey
,
S. P.
Baker
, and
M. C. H.
Van Der Meulen
, “
Reduced tissue-level stiffness and mineralization in osteoporotic cancellous bone
,”
Calcif. Tissue Int.
95
,
125
(
2014
).
29.
Z.
Yuan
et al, “
Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments
,”
Mol. Cancer
22
,
1
42
(
2023
).
30.
K. A.
Athanasiou
,
R.
Eswaramoorthy
,
P.
Hadidi
, and
J. C.
Hu
, “
Self-organization and the self-assembling process in tissue engineering
,”
Annu. Rev. Biomed. Eng.
15
,
115
136
(
2013
).
31.
J.
Kim
,
B. K.
Koo
, and
J. A.
Knoblich
, “
Human organoids: Model systems for human biology and medicine
,”
Nat. Rev. Mol. Cell Biology
21
,
571
584
(
2020
).
32.
X. Y.
Tang
et al, “
Human organoids in basic research and clinical applications
,”
Signal Transduction Targeted Ther.
7
,
168
(
2022
).
33.
J.
Langthasa
et al, “
Extracellular matrix mediates moruloid-blastuloid morphodynamics in malignant ovarian spheroids
,”
Life Sci. Alliance
4
,
e202000942
(
2021
).
34.
T.
Hoshiba
and
S.
Yunoki
, “
Comparison of decellularization protocols for cultured cell-derived extracellular matrix—Effects on decellularization efficacy, extracellular matrix retention, and cell functions
,”
J. Biomed. Mater. Res., Part B
111
,
85
94
(
2023
).
35.
D. J.
Hsieh
et al, “
Protocols for the preparation and characterization of decellularized tissue and organ scaffolds for tissue engineering
,”
Biotechniques
70
(2),
107
115
(
2021
).
36.
A.
Biehl
et al, “
Towards a standardized multi-tissue decellularization protocol for the derivation of extracellular matrix materials
,”
Biomater. Sci.
11
,
641
654
(
2023
).
37.
M.
Dabaghi
et al, “
A robust protocol for decellularized human lung bioink generation amenable to 2D and 3D lung cell culture
,”
Cells
10
(
6
),
1538
(
2021
).
38.
Q.
Yao
et al, “
Recent development and biomedical applications of decellularized extracellular matrix biomaterials
,”
Mater. Sci. Eng.: C
104
,
109942
(
2019
).
39.
L. P.
Ferreira
,
V. M.
Gaspar
, and
J. F.
Mano
, “
Decellularized extracellular matrix for bioengineering physiomimetic 3D in vitro tumor models
,”
Trends Biotechnol.
38
,
1397
1414
(
2020
).
40.
M. S.
Massaro
et al, “
Decellularized xenogeneic scaffolds in transplantation and tissue engineering: Immunogenicity versus positive cell stimulation
,”
Mater. Sci. Eng.: C
127
,
112203
(
2021
).
41.
H.
Capella-Monsonís
and
D. I.
Zeugolis
, “
Decellularized xenografts in regenerative medicine: From processing to clinical application
,”
Xenotransplantation
28
,
e12683
(
2021
).
42.
H.
Jin
et al, “
Decellularization-based modification strategy for bioactive xenografts promoting tendon repair
,”
Adv. Healthcare Mater.
13
(
4
),
2302660
(
2023
).
43.
J. M.
Fishman
et al, “
Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
14360
14365
(
2013
).
44.
F.
Burgio
,
N.
Rimmer
,
U.
Pieles
,
J.
Buschmann
, and
M.
Beaufils-Hugot
, “
Characterization and in ovo vascularization of a 3D-printed hydroxyapatite scaffold with different extracellular matrix coatings under perfusion culture
,”
Biol. Open
7
(
12
),
bio034488
(
2018
).
45.
G.
Tour
,
M.
Wendel
, and
I.
Tcacencu
, “
Cell-derived matrix enhances osteogenic properties of hydroxyapatite
,”
Tissue Eng., Part A
17
,
127
137
(
2010
).
46.
Y.
Seo
et al, “
Development of an anisotropically organized brain dECM hydrogel-based 3D neuronal culture platform for recapitulating the brain microenvironment in vivo
,”
ACS Biomater. Sci. Eng.
6
,
610
620
(
2020
).
47.
S. R.
Caliari
and
J. A.
Burdick
, “
A practical guide to hydrogels for cell culture
,”
Nat. Methods
13
,
405
414
(
2016
).
48.
G.
Jose
,
K. T.
Shalumon
, and
J.-P.
Chen
, “
Natural polymers based hydrogels for cell culture applications
,”
Curr. Med. Chem.
27
,
2734
2776
(
2020
).
49.
D. W.
Hutmacher
, “
Biomaterials offer cancer research the third dimension
,”
Nat. Mater.
9
,
90
93
(
2010
).
50.
T.
Saydé
et al, “
Biomaterials for three-dimensional cell culture: From applications in oncology to nanotechnology
,”
Nanomaterials
11
(
2
),
481
(
2021
).
51.
Y.
Park
,
K. M.
Huh
, and
S. W.
Kang
, “
Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research
,”
Int. J. Mol. Sci.
22
,
2491
(
2021
).
52.
G.
Martínez
et al, “
Versatile biodegradable poly(acrylic acid)-based hydrogels infiltrated in porous titanium implants to improve the biofunctional performance
,”
Biomacromolecules
24
(
11
),
4743
–4758 (
2023
).
53.
J.
Li
et al, “
MBG/PGA-PCL composite scaffolds provide highly tunable degradation and osteogenic features
,”
Bioact. Mater.
15
,
53
67
(
2022
).
54.
D.
Fan
,
U.
Staufer
, and
A.
Accardo
, “
Engineered 3D polymer and hydrogel microenvironments for cell culture applications
,”
Bioengineering
6
(
4
),
113
(
2019
).
55.
A. S.
Hayward
,
N.
Sano
,
S. A.
Przyborski
, and
N. R.
Cameron
, “
Acrylic-acid-functionalized polyHIPE scaffolds for use in 3D cell culture
,”
Macromol. Rapid Commun.
34
,
1844
1849
(
2013
).
56.
S. P.
Singh
,
M. P.
Schwartz
,
J. Y.
Lee
,
B. D.
Fairbanks
, and
K. S.
Anseth
, “
A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration
,”
Biomater. Sci.
2
,
1024
(
2014
).
57.
K. A.
Kyburz
and
K. S.
Anseth
, “
Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density
,”
Acta Biomater.
9
,
6381
6392
(
2013
).
58.
L.
Lei
et al, “
Biofunctional peptide-click PEG-based hydrogels as 3D cell scaffolds for corneal epithelial regeneration
,”
J. Mater. Chem. B
10
,
5938
5945
(
2022
).
59.
M. B.
Łabowska
, et al, “
A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting
,”
Materials
14
,
858
(
2021
).
60.
M.
Mohammed
,
T. S.
Lai
, and
H. C.
Lin
, “
Substrate stiffness and sequence dependent bioactive peptide hydrogels influence the chondrogenic differentiation of human mesenchymal stem cells
,”
J. Mater. Chem. B
9
,
1676
1685
(
2021
).
61.
C. B.
Highley
,
C. B.
Rodell
, and
J. A.
Burdick
, “
Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
,”
Adv. Mater.
27
,
5075
5079
(
2015
).
62.
L.
Ouyang
,
C. B.
Highley
,
C. B.
Rodell
,
W.
Sun
, and
J. A.
Burdick
, “
3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking
,”
ACS Biomater. Sci. Eng.
2
,
1743
1751
(
2016
).
63.
C. B.
Highley
et al, “
Jammed microgel inks for 3D printing applications
,”
Adv. Sci.
6
,
1801076
(
2019
).
64.
J.
Gopinathan
and
I.
Noh
, “
Recent trends in bioinks for 3D printing
,”
Biomater. Res.
22
,
1
15
(
2018
).
65.
R.
Khoeini
et al, “
Natural and synthetic bioinks for 3D bioprinting
,”
Adv. Nanobiomed. Res.
1
,
2000097
(
2021
).
66.
X.
Wang
and
C.
Liu
, “
Fibrin hydrogels for endothelialized liver tissue engineering with a predesigned vascular network
,”
Polymers
10
,
1048
(
2018
).
67.
Y.
Li
,
H.
Meng
,
Y.
Liu
, and
B. P.
Lee
, “
Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering
,”
Sci. World J.
2015
,
685690
(
2015
).
68.
C.
Schneider-Barthold
,
S.
Baganz
,
M.
Wilhelmi
,
T.
Scheper
, and
I.
Pepelanova
, “
Hydrogels based on collagen and fibrin—Frontiers and applications
,”
BioNanoMaterials
17
,
3
12
(
2016
).
69.
D.
Loessner
et al, “
Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms
,”
Nat. Protocols
11
,
727
746
(
2016
).
70.
N.
Shah
et al, “
Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells
,”
Sci. Rep.
11
,
1
18
(
2021
).
71.
I.
Pepelanova
,
K.
Kruppa
,
T.
Scheper
, and
A.
Lavrentieva
, “
Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting
,”
Bioengineering
5
,
55
(
2018
).
72.
W.
Shi
et al, “
Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering
,”
Biofabrication
14
,
014107
(
2021
).
73.
P.
Le Thi
et al, “
Enzymatically crosslinkable hyaluronic acid-gelatin hybrid hydrogels as potential bioinks for tissue regeneration
,”
Macromol. Res.
28
,
400
406
(
2020
).
74.
J. A.
Semba
,
A. A.
Mieloch
,
E.
Tomaszewska
,
P.
Cywoniuk
, and
J. D.
Rybka
, “
Formulation and evaluation of a bioink composed of alginate, gelatin, and nanocellulose for meniscal tissue engineering
,”
Int. J. Bioprint.
9
,
621
(
2023
).
75.
B. T.
Duymaz
et al, “
3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior
,”
Eur. Polym. J.
119
,
426
437
(
2019
).
76.
T.
Lam
et al, “
Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage
,”
J. Biomed. Mater. Res., Part B
107
,
2649
(
2019
).
77.
N. B.
Allen
et al, “
3D-bioprinted GelMA-gelatin-hydroxyapatite osteoblast-laden composite hydrogels for bone tissue engineering
,”
Bioprinting
26
,
e00196
(
2022
).
78.
H.
Lee
,
T.-S.
Jang
,
G.
Han
,
H.-W.
Kim
, and
H.-D.
Jung
, “
Freeform 3D printing of vascularized tissues: Challenges and strategies
,”
J. Tissue Eng.
12
(
2021
).
79.
C. C.
Piras
and
D. K.
Smith
, “
Multicomponent polysaccharide alginate-based bioinks
,”
J. Mater. Chem. B
8
,
8171
8188
(
2020
).
80.
M.
Wang
et al, “
A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties
,”
Biofabrication
14
,
024105
(
2022
).
81.
L.
Musilová
et al, “
Cross-linked gelatine by modified dextran as a potential bioink prepared by a simple and non-toxic process
,”
Polymers
14
,
391
(
2022
).
82.
P. S.
Gungor-Ozkerim
,
I.
Inci
,
Y. S.
Zhang
,
A.
Khademhosseini
, and
M. R.
Dokmeci
, “
Bioinks for 3D bioprinting: An overview
,”
Biomater. Sci.
6
,
915
(
2018
).
83.
F.
Pati
et al, “
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
,”
Nat. Commun.
5
,
1
11
(
2014
).
84.
B. S.
Kim
,
S.
Das
,
J.
Jang
, and
D. W.
Cho
, “
Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments
,”
Chem. Rev.
120
,
10608
10661
(
2020
).
85.
K.
Dzobo
,
K. S. C. M.
Motaung
, and
A.
Adesida
, “
Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review
,”
Int. J. Mol. Sci.
20
,
4628
(
2019
).
86.
A.
Bandyopadhyay
,
B. B.
Mandal
, and
N.
Bhardwaj
, “
3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering
,”
J. Biomed. Mater. Res. A
110
,
884
898
(
2022
).
87.
E.
Hamedi
et al, “
Recent progress of bio-printed PEGDA-based bioinks for tissue regeneration
,”
Polym. Adv. Technol.
34
,
3505
3517
(
2023
).
88.
S. Y.
Chang
,
T.
Ching
, and
M.
Hashimoto
, “
Bioprinting using PEGDMA-based hydrogel on DLP printer
,”
Mater Today Proc.
70
,
179
183
(
2022
).
89.
D.
Wu
et al, “
3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity
,”
Mater. Des.
160
,
486
495
(
2018
).
90.
B. A. G.
de Melo
et al, “
3D printed cartilage-like tissue constructs with spatially controlled mechanical properties
,”
Adv. Funct. Mater.
29
,
1906330
(
2019
).
91.
S.
Piluso
et al, “
3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments
,”
Biofabrication
13
,
045008
(
2021
).
92.
M.
Cortesi
and
E.
Giordano
, “
Non-destructive monitoring of 3D cell cultures: New technologies and applications
,”
PeerJ
10
,
e13338
(
2022
).
93.
B.
Gantenbein
,
A. S.
Croft
, and
M.
Larraillet
, “
Mammalian cell viability methods in 3D scaffolds for tissue engineering
,” in
Fluorescence Methods for Investigation of Living Cells and Microorganisms
(
IntechOpen
,
2020
).
94.
H.
Song
et al, “
Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials
,”
J. Nanobiotechnol.
18
,
1
19
(
2020
).
95.
J.
Kim
,
J. S.
Kong
,
W.
Han
,
B. S.
Kim
, and
D. W.
Cho
, “
3D cell printing of tissue/organ-mimicking constructs for therapeutic and drug testing applications
,”
Int. J. Mol. Sci.
21
,
1
27
(
2020
).
96.
J.
Visser
et al, “
Biofabrication of multi-material anatomically shaped tissue constructs
,”
Biofabrication
5
,
035007
(
2013
).
97.
A. M.
Compaan
,
K.
Christensen
, and
Y.
Huang
, “
Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate
,”
ACS Biomater. Sci. Eng.
3
,
1519
1526
(
2017
).
98.
R.
Landers
et al, “
Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
,”
J. Mater. Sci.
37
,
3107
3116
(
2002
).
99.
R.
Landers
,
U.
Hübner
,
R.
Schmelzeisen
, and
R.
Mülhaupt
, “
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
,”
Biomaterials
23
,
4437
4447
(
2002
).
100.
C.
Xu
,
W.
Chai
,
Y.
Huang
, and
R. R.
Markwald
, “
Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes
,”
Biotechnol. Bioeng.
109
,
3152
3160
(
2012
).
101.
H. W.
Kang
et al, “
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
,”
Nat. Biotechnol.
34
,
312
319
(
2016
).
102.
J. S.
Lee
et al, “
3D printing of composite tissue with complex shape applied to ear regeneration
,”
Biofabrication
6
,
024103
(
2014
).
103.
A.
Erben
et al, “
Precision 3D-printed cell scaffolds mimicking native tissue composition and mechanics
,”
Adv. Healthcare Mater.
9
,
2000918
(
2020
).
104.
G.
Flamourakis
et al, “
High-resolution lightweight and multifunctional 3D printed scaffolds for cell studies
,”
Results Mater.
18
,
100393
(
2023
).
105.
S.
Ji
and
M.
Guvendiren
3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis
,”
Micromachines
11
,
31
(
2020
).
106.
N.
Fazeli
,
E.
Arefian
,
S.
Irani
,
A.
Ardeshirylajimi
, and
E.
Seyedjafari
, “
3D-printed PCL scaffolds coated with nanobioceramics enhance osteogenic differentiation of stem cells
,”
ACS Omega
6
,
35284
35296
(
2021
).
107.
A.
Dubey
,
H.
Vahabi
, and
V.
Kumaravel
, “
Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections
,”
ACS Biomater. Sci. Eng.
9
,
4020
4044
(
2023
).
108.
H.
Kang
et al, “
Biodegradable 3D printed scaffolds of modified poly (Trimethylene carbonate) composite materials with poly (l-lactic acid) and hydroxyapatite for bone regeneration
,”
Nanomaterials
11
,
3215
(
2021
).
109.
J. H.
Ahn
et al, “
3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process
,”
Addit. Manuf.
41
,
101988
(
2021
).
110.
S. K.
Hedayati
,
A. H.
Behravesh
,
S.
Hasannia
,
A.
Bagheri Saed
, and
B.
Akhoundi
, “
3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties
,”
Polym. Test.
83
,
106347
(
2020
).
111.
T. J.
Hinton
et al, “
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
,”
Sci. Adv.
1
,
e1500758
(
2015
).
112.
K. S.
Lefroy
,
B. S.
Murray
, and
M. E.
Ries
, “
Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation
,”
Cellulose
28
,
647
670
(
2020
).
113.
A. L.
Liu
and
A. J.
García
, “
Methods for generating hydrogel particles for protein delivery
,”
Ann. Biomed. Eng.
44
,
1946
1958
(
2016
).
114.
D. K.
Hwang
,
D.
Dendukuri
, and
P. S.
Doyle
, “
Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles
,”
Lab Chip
8
,
1640
1647
(
2008
).
115.
A.
Sheikhi
et al, “
Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads
,”
Biomaterials
192
,
560
568
(
2019
).
116.
V. P.
Galvan-Chacon
,
L.
Costa
,
D.
Barata
, and
P.
Habibovic
, “
Droplet microfluidics as a tool for production of bioactive calcium phosphate microparticles with controllable physicochemical properties
,”
Acta Biomater.
128
,
486
501
(
2021
).
117.
W.
Li
et al, “
Microfluidic fabrication of microparticles for biomedical applications
,”
Chem. Soc. Rev.
47
,
5646
5683
(
2018
).
118.
B. G.
De Geest
,
J. P.
Urbanski
,
T.
Thorsen
,
J.
Demeester
, and
S. C.
De Smedt
, “
Synthesis of monodisperse biodegradable microgels in microfluidic devices
,”
Langmuir
21
,
10275
10279
(
2005
).
119.
M.
Sreepadmanabh
,
M.
Ganesh
,
R.
Bhat
, and
T.
Bhattacharjee
, “
Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting
,”
Biomed. Mater.
18
,
045011
(
2023
).
120.
S. T.
Ellison
et al, “
Cellular micromasonry: Biofabrication with single cell precision
,”
Soft Matter
18
,
8554
8560
(
2022
).
121.
C. D.
Morley
,
E. A.
Ding
,
E. M.
Carvalho
, and
S.
Kumar
, “
A balance between inter- and intra-microgel mechanics governs stem cell viability in injectable dynamic granular hydrogels
,”
Adv. Mater.
35
,
2304212
(
2023
).
122.
T.
Bhattacharjee
and
T. E.
Angelini
, “
3D T cell motility in jammed microgels
,”
J. Phys. D
52
,
024006
(
2018
).
123.
T.
Bhattacharjee
et al, “
Polyelectrolyte scaling laws for microgel yielding near jamming
,”
Soft Matter
14
,
1559
1570
(
2018
).
124.
K.
Wolf
et al, “
Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force
,”
J. Cell Biol.
201
,
1069
(
2013
).
125.
T.
Yeung
et al, “
Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion
,”
Cell Motil. Cytoskeleton
60
,
24
34
(
2005
).
126.
C.
Zhou
et al, “
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction
,”
Int. J. Oral Sci.
14
,
1
10
(
2022
).
127.
T S.
Bhattacharjee
and
S.
Datta
, “
Bacterial hopping and trapping in porous media
,”
Nat. Commun.
10
,
2075
(
2019
).
128.
T.
Bhattacharjee
et al, “
Writing in the granular gel medium
,”
Sci. Adv.
1
,
e1500655
(
2015
).
129.
Y.
Zhang
et al, “
3D printed collagen structures at low concentrations supported by jammed microgels
,”
Bioprinting
21
,
e00121
(
2021
).
130.
C. D.
Morley
et al, “
Quantitative characterization of 3D bioprinted structural elements under cell generated forces
,”
Nat. Commun.
10
,
3029
(
2019
).
131.
C. D.
Morley
et al, “
Spatiotemporal T cell dynamics in a 3D bioprinted immunotherapy model
,”
Bioprinting
28
,
e00231
(
2022
).
132.
T.
Bhattacharjee
,
D. B.
Amchin
,
R.
Alert
,
J. A.
Ott
, and
S. S.
Datta
, “
Chemotactic smoothing of collective migration
,”
eLife
11
,
e71226
(
2022
).
133.
T.
Bhattacharjee
,
D. B.
Amchin
,
J. A.
Ott
,
F.
Kratz
, and
S. S.
Datta
, “
Chemotactic migration of bacteria in porous media
,”
Biophys J
120
,
3483
3497
(
2021
).
134.
A.
Lee
et al, “
3D bioprinting of collagen to rebuild components of the human heart
,”
Science
365
,
482
487
(
2019
).
135.
T. J.
Hinton
et al, “
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
,”
Sci. Adv.
1
,
e1500758
(
2015
).
136.
L.
Ning
et al, “
Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity
,”
ACS Appl. Mater. Interfaces
12
,
44563
44577
(
2020
).
137.
O.
Jeon
,
Y. B.
Lee
,
T. J.
Hinton
,
A. W.
Feinberg
, and
E.
Alsberg
, “
Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues
,”
Mater. Today Chem.
12
,
61
70
(
2019
).
138.
Y.
Jin
,
A.
Compaan
,
T.
Bhattacharjee
, and
Y.
Huang
, “
Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures
,”
Biofabrication
8
,
025016
(
2016
).
139.
Y.
Jin
,
A.
Compaan
,
W.
Chai
, and
Y.
Huang
, “
Functional nanoclay suspension for printing-then-solidification of liquid materials
,”
ACS Appl. Mater. Interfaces
9
,
20057
20066
(
2017
).
140.
Y.
Jin
,
W.
Chai
, and
Y.
Huang
, “
Fabrication of stand-alone cell-laden collagen vascular network scaffolds using fugitive pattern-based printing-then-casting approach
,”
ACS Appl. Mater Interfaces
10
,
28361
28371
(
2018
).
141.
C.
Dikyol
,
M.
Altunbek
, and
B.
Koc
, “
Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures
,”
J. Mater. Res.
36
,
3851
3864
(
2021
).
142.
E. O.
Osidak
,
V. I.
Kozhukhov
,
M. S.
Osidak
, and
S. P.
Domogatsky
, “
Collagen as bioink for bioprinting: A comprehensive review
,”
Int. J. Bioprint.
6
,
270
(
2020
).
143.
B. B.
Mendes
et al, “
Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications
,”
Acta Biomater.
119
,
101
113
(
2021
).
144.
T. H.
Qazi
et al, “
Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion
,”
Adv. Mater.
34
,
2109194
(
2022
).
145.
Z.
Ataie
et al, “
Nanoengineered granular hydrogel bioinks with preserved interconnected microporosity for extrusion bioprinting
,”
Small
18
,
2202390
(
2022
).
146.
C. E.
Miksch
et al, “
4D printing of extrudable and degradable poly(ethylene glycol) microgel scaffolds for multidimensional cell culture
,”
Small
18
,
2200951
(
2022
).
147.
A. J.
Seymour
,
S.
Shin
, and
S. C.
Heilshorn
, “
3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration
,”
Adv. Healthcare Mater.
10
,
2100644
(
2021
).
148.
A.
Ding
et al, “
Jammed micro-flake hydrogel for four-dimensional living cell bioprinting
,”
Adv. Mater.
34
,
2109394
(
2022
).
149.
S.
Chen
et al, “
Engineering natural pollen grains as multifunctional 3D printing materials (Adv. Funct. Mater. 49/2021)
,”
Adv. Funct. Mater.
31
,
2170360
(
2021
).
150.
C. S.
O'Bryan
,
C. P.
Kabb
,
B. S.
Sumerlin
, and
T. E.
Angelini
, “
Jammed polyelectrolyte microgels for 3D cell culture applications: Rheological behavior with added salts
,”
ACS Appl. Bio Mater.
2
,
1509
1517
(
2019
).
151.
M.
Machour
et al, “
Print-and-grow within a novel support material for 3D bioprinting and post-printing tissue growth
,”
Adv. Sci.
9
,
2200882
(
2022
).
152.
J.
Zhao
and
N.
He
, “
A mini-review of embedded 3D printing: Supporting media and strategies
,”
J. Mater. Chem. B
8
,
10474
10486
(
2020
).
153.
Y.
Fang
et al, “
3D printing of cell-laden microgel-based biphasic bioink with heterogeneous microenvironment for biomedical applications
,”
Adv Funct Mater
32
,
2109810
(
2022
).
154.
A. M.
Compaan
,
K.
Song
,
W.
Chai
, and
Y.
Huang
, “
Cross-linkable microgel composite matrix bath for embedded bioprinting of perfusable tissue constructs and sculpting of solid objects
,”
ACS Appl. Mater. Interfaces
12
,
7855
7868
(
2020
).
155.
Q.
Feng
et al, “
Assembling microgels via dynamic cross-linking reaction improves printability, microporosity, tissue-adhesion, and self-healing of microgel bioink for extrusion bioprinting
,”
ACS Appl. Mater. Interfaces
14
,
15653
15666
(
2022
).
156.
T. G.
Molley
et al, “
Heterotypic tumor models through freeform printing into photostabilized granular microgels
,”
Biomater. Sci.
9
,
4496
4509
(
2021
).
157.
S.
Xin
,
D.
Chimene
,
J. E.
Garza
,
A. K.
Gaharwar
, and
D. L.
Alge
, “
Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting
,”
Biomater. Sci.
7
,
1179
1187
(
2019
).
158.
N.
Chai
et al, “
Construction of 3D printed constructs based on microfluidic microgel for bone regeneration
,”
Composites, Part B
223
,
109100
(
2021
).
159.
D. B.
Gomes
et al, “
3D soft hydrogels induce human mesenchymal stem cells “deep” quiescence
,” bioRxiv (
2021
).
160.
R. S.
Stowers
,
S. C.
Allen
,
L. J.
Suggs
, and
K. S.
Anseth
, “
Dynamic phototuning of 3D hydrogel stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
1953
1958
(
2015
).
161.
C.
Vitale
et al, “
Tumor microenvironment and hydrogel-based 3D cancer models for in vitro testing immunotherapies
,”
Cancers
14
,
1013
(
2022
).
162.
X.
Ding
et al, “
Synthetic peptide hydrogels as 3D scaffolds for tissue engineering
,”
Adv. Drug Delivery Rev.
160
,
78
104
(
2020
).
163.
B. J.
Klotz
et al, “
A versatile biosynthetic hydrogel platform for engineering of tissue analogues
,”
Adv. Healthcare Mater.
8
,
1900979
(
2019
).
164.
J.
George
,
C. C.
Hsu
,
L. T. B.
Nguyen
,
H.
Ye
, and
Z.
Cui
, “
Neural tissue engineering with structured hydrogels in CNS models and therapies
,”
Biotechnol. Adv.
42
,
107370
(
2020
).
165.
T.
Bhattacharjee
et al, “
Liquid-like solids support cells in 3D
,”
ACS Biomater. Sci. Eng.
2
,
1787
1795
(
2016
).
166.
S.
Shin
,
H.
Kwak
,
D.
Shin
, and
J.
Hyun
, “
Solid matrix-assisted printing for three-dimensional structuring of a viscoelastic medium surface
,”
Nat. Commun.
10
,
4650
(
2019
).
167.
K.
Song
,
A. M.
Compaan
,
W.
Chai
, and
Y.
Huang
, “
Injectable gelatin microgel-based composite ink for 3D bioprinting in air
,”
ACS Appl. Mater. Interfaces
12
,
22453
22466
(
2020
).
168.
K.
Song
,
D.
Zhang
,
J.
Yin
, and
Y.
Huang
, “
Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink
,”
Addit. Manuf.
41
,
101963
(
2021
).
169.
S. G.
Patrício
et al, “
Freeform 3D printing using a continuous viscoelastic supporting matrix
,”
Biofabrication
12
,
35017
(
2020
).
170.
N.
Alegret
,
A.
Dominguez-Alfaro
, and
D.
Mecerreyes
, “
3D scaffolds based on conductive polymers for biomedical applications
,”
Biomacromolecules
20
,
73
89
(
2019
).
171.
S. S.
Athukorala
et al, “
3D printable electrically conductive hydrogel scaffolds for biomedical applications: A review
,”
Polymers
13
,
474
(
2021
).
172.
C.
Gao
,
Y.
Li
,
X.
Liu
,
J.
Huang
, and
Z.
Zhang
, “
3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury
,”
Chem. Eng. J.
451
,
138788
(
2023
).
173.
S.
Vijayavenkataraman
et al, “
3D-Printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair
,”
Front. Bioeng. Biotechnol.
7
,
266
(
2019
).
174.
Y.
Wang
et al, “
3D bioprinting of conductive hydrogel for enhanced myogenic differentiation
,”
Regener. Biomater.
8
,
rbab035
(
2021
).
175.
Y. H.
Zhao
et al, “
Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair
,”
Neural Regener. Res.
13
,
1455
1464
(
2018
).
176.
C. A.
Deforest
and
D. A.
Tirrell
, “
A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels
,”
Nat. Mater.
14
,
523
531
(
2015
).
177.
C. A.
DeForest
and
K. S.
Anseth
, “
Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions
,”
Nat. Chem.
3
,
925
931
(
2011
).
178.
C. A.
Deforest
,
B. D.
Polizzotti
, and
K. S.
Anseth
, “
Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments
,”
Nat. Mater.
8
,
659
664
(
2009
).
179.
J. A.
Shadish
,
G. M.
Benuska
, and
C. A.
DeForest
, “
Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials
,”
Nat. Mater.
18
,
1005
1014
(
2019
).
You do not currently have access to this content.