The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions.

1.
W. J.
Wiersinga
,
A.
Rhodes
,
A. C.
Cheng
,
S. J.
Peacock
, and
H. C.
Prescott
, “
Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review
,” J. Am. Med. Assoc.
324
(
8
),
782
793
(
2020
).
2.
T. R.
Ray
,
J.
Choi
,
A. J.
Bandodkar
,
S.
Krishnan
,
P.
Gutruf
,
L.
Tian
,
R.
Ghaffari
, and
J. A.
Rogers
, “
Bio-integrated wearable systems: A comprehensive review
,”
Chem. Rev.
119
(
8
),
5461
5533
(
2019
).
3.
J.
Heikenfeld
,
A.
Jajack
,
J.
Rogers
,
P.
Gutruf
,
L.
Tian
,
T.
Pan
,
R.
Li
,
M.
Khine
,
J.
Kim
,
J.
Wang
, and
J.
Kim
, “
Wearable sensors: Modalities, challenges, and prospects
,”
Lab Chip
18
(
2
),
217
248
(
2018
).
4.
W.
Gao
,
H.
Ota
,
D.
Kiriya
,
K.
Takei
, and
A.
Javey
, “
Flexible electronics toward wearable sensing
,”
Acc. Chem. Res.
52
(
3
),
523
533
(
2019
).
5.
Z.
Lou
,
L.
Wang
, and
G.
Shen
, “
Recent advances in smart wearable sensing systems
,”
Adv. Mater. Technol.
3
(
12
),
1800444
(
2018
).
6.
Y.
Ling
,
T.
An
,
L. W.
Yap
,
B.
Zhu
,
S.
Gong
, and
W.
Cheng
, “
Disruptive, soft, wearable sensors
,”
Adv. Mater.
32
(
18
),
1904664
(
2020
).
7.
J. R.
Sempionatto
,
J. A.
Lasalde-Ramírez
,
K.
Mahato
,
J.
Wang
, and
W.
Gao
, “
Wearable chemical sensors for biomarker discovery in the omics era
,”
Nat. Rev. Chem.
6
,
899
915
(
2022
).
8.
H. C.
Ates
,
P. Q.
Nguyen
,
L.
Gonzalez-Macia
,
E.
Morales-Narváez
,
F.
Güder
,
J. J.
Collins
, and
C.
Dincer
, “
End-to-end design of wearable sensors
,”
Nat. Rev. Mater.
7
,
887
907
(
2022
).
9.
C.
Wang
,
E.
Shirzaei Sani
, and
W.
Gao
, “
Wearable bioelectronics for chronic wound management
,”
Adv. Funct. Mater
32
(
17
),
2111022
(
2022
).
10.
J.
Kim
,
A. S.
Campbell
,
B. E.-F.
de Ávila
, and
J.
Wang
, “
Wearable biosensors for healthcare monitoring
,”
Nat. Biotechnol.
37
(
4
),
389
406
(
2019
).
11.
J. J.
Kim
,
Y.
Wang
,
H.
Wang
,
S.
Lee
,
T.
Yokota
, and
T.
Someya
, “
Skin electronics: Next‐generation device platform for virtual and augmented reality
,”
Adv. Funct. Mater.
31
(
39
),
2009602
(
2021
).
12.
P.
Zhu
,
H.
Peng
, and
A. Y.
Rwei
, “
Flexible, wearable biosensors for digital health
,”
Med. Nov. Technol. Devices
14
,
100118
(
2022
).
13.
Y.
Khan
,
A. E.
Ostfeld
,
C. M.
Lochner
,
A.
Pierre
, and
A. C.
Arias
, “
Monitoring of vital signs with flexible and wearable medical devices
,”
Adv. Mater.
28
(
22
),
4373
4395
(
2016
).
14.
Y. J.
Hong
,
H.
Jeong
,
K. W.
Cho
,
N.
Lu
, and
D. H.
Kim
, “
Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics
,”
Adv. Funct. Mater.
29
(
19
),
1808247
(
2019
).
15.
A.
Ahmad Tarar
,
U.
Mohammad
, and
S.
K Srivastava
, “
Wearable skin sensors and their challenges: A review of transdermal, optical, and mechanical sensors
,”
Biosensors
10
(
6
),
56
(
2020
).
16.
S.
Chen
,
J.
Qi
,
S.
Fan
,
Z.
Qiao
,
J. C.
Yeo
, and
C. T.
Lim
, “
Flexible wearable sensors for cardiovascular health monitoring
,”
Adv. Healthcare Mater.
10
(
17
),
2100116
(
2021
).
17.
Y.
Liu
,
D.
Shukla
,
H.
Newman
, and
Y.
Zhu
, “
Soft wearable sensors for monitoring symptoms of COVID-19: A review
,”
Prog. Biomed. Eng.
4
,
012001
(
2021
).
18.
S.
Mirjalali
,
S.
Peng
,
Z.
Fang
,
C. H.
Wang
, and
S.
Wu
, “
Wearable sensors for remote health monitoring: Potential applications for early diagnosis of COVID‐19
,”
Adv. Mater. Technol.
7
(
1
),
2100545
(
2022
).
19.
S.
Afroj
,
L.
Britnell
,
T.
Hasan
,
D. V.
Andreeva
,
K. S.
Novoselov
, and
N.
Karim
, “
Graphene‐based technologies for tackling COVID‐19 and future pandemics
,”
Adv. Funct. Mater.
31
(
52
),
2107407
(
2021
).
20.
L. Y.
Mortenson
,
P. N.
Malani
, and
R. D.
Ernst
, “
Caring for someone with COVID-19
,” J. Am. Med. Assoc.
324
(
10
),
1016
(
2020
).
21.
M.
Sang
,
K.
Kang
,
Y.
Zhang
,
H.
Zhang
,
K.
Kim
,
M.
Cho
,
J.
Shin
,
J. H.
Hong
,
T.
Kim
,
S. K.
Lee
,
W.-H.
Yeo
,
J. W.
Lee
,
T.
Lee
,
B.
Xu
, and
K. J.
Yu
, “
Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision
,”
Adv. Mater.
34
(
4
),
2105865
(
2022
).
22.
H.
Jeong
,
J. Y.
Lee
,
K.
Lee
,
Y. J.
Kang
,
J.-T.
Kim
,
R.
Avila
,
A.
Tzavelis
,
J.
Kim
,
H.
Ryu
,
S. S.
Kwak
,
J. U.
Kim
,
A.
Banks
,
H.
Jang
,
J.-K.
Chang
,
S.
Li
,
C. K.
Mummidisetty
,
Y.
Park
,
S.
Nappi
,
K. S.
Chun
,
Y. J.
Lee
,
K.
Kwon
,
X.
Ni
,
H. U.
Chung
,
H.
Luan
,
J.-H.
Kim
,
C.
Wu
,
S.
Xu
,
A.
Banks
,
A.
Jayaraman
,
Y.
Huang
, and
J. A.
Rogers
, “
Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients
,”
Sci. Adv.
7
(
20
),
eabg3092
(
2021
).
23.
Y.
Liu
,
L.
Zhao
,
R.
Avila
,
C.
Yiu
,
T.
Wong
,
Y.
Chan
,
K.
Yao
,
D.
Li
,
Y.
Zhang
,
W.
Li
,
Z.
Xie
, and
X.
Yu
, “
Epidermal electronics for respiration monitoring via thermo-sensitive measuring
,”
Mater. Today Phys.
13
,
100199
(
2020
).
24.
Z.
Liu
,
Z.
Li
,
H.
Zhai
,
L.
Jin
,
K.
Chen
,
Y.
Yi
,
Y.
Gao
,
L.
Xu
,
Y.
Zheng
,
S.
Yao
,
Z.
Liu
,
G.
Li
,
Q.
Song
,
P.
Yue
,
S.
Xie
,
Y.
Li
, and
Z.
Zheng
, “
A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification
,”
Chem. Eng. J.
426
,
130869
(
2021
).
25.
K.
Xu
,
Y.
Fujita
,
Y.
Lu
,
S.
Honda
,
M.
Shiomi
,
T.
Arie
,
S.
Akita
, and
K.
Takei
, “
A wearable body condition sensor system with wireless feedback alarm functions
,”
Adv. Mater.
33
(
18
),
2008701
(
2021
).
26.
K.
Lee
,
X.
Ni
,
J. Y.
Lee
,
H.
Arafa
,
D. J.
Pe
,
S.
Xu
,
R.
Avila
,
M.
Irie
,
J. H.
Lee
,
R. L.
Easterlin
,
D. H.
Kim
,
H. U.
Chung
,
O. O.
Olabisi
,
S.
Getaneh
,
E.
Chung
,
M.
Hill
,
J.
Bell
,
H.
Jang
,
C.
Liu
,
J. B.
Park
,
J.
Kim
,
S. B.
Kim
,
S.
Mehta
,
M.
Pharr
,
A.
Tzavelis
,
J. T.
Reeder
,
I.
Huang
,
Y.
Deng
,
Z.
Xie
,
C. R.
Davies
,
Y.
Huang
, and
J. A.
Rogers
, “
Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch
,”
Nat. Biomed. Eng.
4
(
2
),
148
158
(
2020
).
27.
A.
Shahshahani
,
C.
Laverdiere
,
S.
Bhadra
, and
Z.
Zilic
, “
Ultrasound sensors for diaphragm motion tracking: An application in non-invasive respiratory monitoring
,”
Sensors
18
(
8
),
2617
(
2018
).
28.
H.
Lee
,
E.
Kim
,
Y.
Lee
,
H.
Kim
,
J.
Lee
,
M.
Kim
,
H.-J.
Yoo
, and
S.
Yoo
, “
Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch
,”
Sci. Adv.
4
(
11
),
eaas9530
(
2018
).
29.
Y.
Khan
,
D.
Han
,
J.
Ting
,
M.
Ahmed
,
R.
Nagisetty
, and
A. C.
Arias
, “
Organic multi-channel optoelectronic sensors for wearable health monitoring
,”
IEEE Access
7
,
128114
128124
(
2019
).
30.
H. U.
Chung
,
B. H.
Kim
,
J. Y.
Lee
,
J.
Lee
,
Z.
Xie
,
E. M.
Ibler
,
K.
Lee
,
A.
Banks
,
J. Y.
Jeong
,
J.
Kim
,
C.
Ogle
,
D.
Grande
,
Y.
Yu
,
H.
Jang
,
P.
Assem
,
D.
Ryu
,
J. W.
Kwak
,
M.
Namkoong
,
J. B.
Park
,
Y.
Lee
,
D. H.
Kim
,
A.
Ryu
,
J.
Jeong
,
K.
You
,
B.
Ji
,
Z.
Liu
,
Q.
Huo
,
X.
Feng
,
Y.
Deng
,
Y.
Xu
,
Kyung
InJang
,
J.
Kim
,
Y.
Zhang
,
R.
Ghaffar
,
C.
Rand
,
M.
Schau
,
A.
Hamvas
,
D. E.
Weese-Mayer
,
Y.
Huang
,
S. M.
Lee
,
C. H.
Lee
,
N. R.
Shanbhag
,
A. S.
Palle
,
S.
Xu
, and
J. A.
Rogers
, “
Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care
,”
Science
363
(
6430
),
eaau0780
(
2019
).
31.
D.
Han
,
Y.
Khan
,
J.
Ting
,
J.
Zhu
,
C.
Combe
,
A.
Wadsworth
,
I.
McCulloch
, and
A. C.
Arias
, “
Pulse oximetry using organic optoelectronics under ambient light
,”
Adv. Mater. Technol.
5
(
5
),
1901122
(
2020
).
32.
X.
Gao
,
X.
Chen
,
H.
Hu
,
X.
Wang
,
W.
Yue
,
J.
Mu
,
Z.
Lou
,
R.
Zhang
,
K.
Shi
,
X.
Chen
et al, “
A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature
,”
Nat. Commun.
13
(
1
),
7757
(
2022
).
33.
S.
Tharakan
,
K.
Nomoto
,
S.
Miyashita
, and
K.
Ishikawa
, “
Body temperature correlates with mortality in COVID-19 patients
,”
Crit. Care
24
(
1
),
298
(
2020
).
34.
C.
Childs
,
Maintaining Body Temperature
(
Alexander's Nursing
,
2011
).
35.
E.
Bridges
and
K.
Thomas
, “
Noninvasive measurement of body temperature in critically ill patients
,”
Crit. Care Nurse
29
(
3
),
94
97
(
2009
).
36.
M.
Li
,
J.
Chen
,
W.
Zhong
,
M.
Luo
,
W.
Wang
,
X.
Qing
,
Y.
Lu
,
Q.
Liu
,
K.
Liu
,
Y.
Wang
, and
D.
Wang
, “
Large-area, wearable, self-powered pressure–temperature sensor based on 3D thermoelectric spacer fabric
,”
ACS Sens.
5
(
8
),
2545
2554
(
2020
).
37.
D. S.
Moran
and
L.
Mendal
, “
Core temperature measurement
,”
Sports Med.
32
(
14
),
879
885
(
2002
).
38.
F.
Ershad
,
A.
Thukral
,
J.
Yue
,
P.
Comeaux
,
Y.
Lu
,
H.
Shim
,
K.
Sim
,
N.-I.
Kim
,
Z.
Rao
,
R.
Guevara
,
L.
Contreras
,
F.
Pan
,
Y.
Zhang
,
Y.-S.
Guan
,
P.
Yang
,
X.
Wang
,
P.
Wang
,
X.
Wu
, and
C.
Yu
, “
Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment
,”
Nat. Commun.
11
(
1
),
3823
(
2020
).
39.
D.
Seok
,
S.
Lee
,
M.
Kim
,
J.
Cho
, and
C.
Kim
, “
Motion artifact removal techniques for wearable EEG and PPG sensor systems
,”
Front. Electron.
2
,
685513
(
2021
).
40.
D. J.
Miller
,
J. V.
Capodilupo
,
M.
Lastella
,
C.
Sargent
,
G. D.
Roach
,
V. H.
Lee
, and
E. R.
Capodilupo
, “
Analyzing changes in respiratory rate to predict the risk of COVID-19 infection
,”
PLoS One
15
(
12
),
e0243693
(
2020
).
41.
A.
Natarajan
,
H.-W.
Su
, and
C.
Heneghan
, “
Assessment of physiological signs associated with COVID-19 measured using wearable devices
,”
npj Digital Med.
3
(
1
),
156
(
2020
).
42.
A.
Natarajan
,
H.-W.
Su
,
C.
Heneghan
,
L.
Blunt
,
C.
O'Connor
, and
L.
Niehaus
, “
Measurement of respiratory rate using wearable devices and applications to COVID-19 detection
,”
npj Digital Med.
4
(
1
),
136
(
2021
).
43.
N. A.
Chatterjee
,
P. N.
Jensen
,
A. W.
Harris
,
D. D.
Nguyen
,
H. D.
Huang
,
R. K.
Cheng
,
J. J.
Savla
,
T. R.
Larsen
,
J. M. D.
Gomez
,
J. M.
Du‐Fay‐de‐Lavallaz
,
R. N.
Lemaitre
,
B.
McKnight
,
S. A.
Gharib
, and
N.
Sotoodehnia
, “
Admission respiratory status predicts mortality in COVID‐19
,”
Influenza Other Respir. Viruses
15
(
5
),
569
572
(
2021
).
44.
M.
Zhang
,
C.
Wang
,
H.
Wang
,
M.
Jian
,
X.
Hao
, and
Y.
Zhang
, “
Carbonized cotton fabric for high‐performance wearable strain sensors
,”
Adv. Funct. Mater.
27
(
2
),
1604795
(
2017
).
45.
M.
Chu
,
T.
Nguyen
,
V.
Pandey
,
Y.
Zhou
,
H. N.
Pham
,
R.
Bar-Yoseph
,
S.
Radom-Aizik
,
R.
Jain
,
D. M.
Cooper
, and
M.
Khine
, “
Respiration rate and volume measurements using wearable strain sensors
,”
npj Digital Med.
2
(
1
),
8
(
2019
).
46.
A.
Shahshahani
,
Z.
Zilic
, and
S.
Bhadra
, “
Motion artifact reduction for respiratory monitoring: A multichannel ultrasound sensor for diaphragm tracking
,”
IEEE Sens. J.
20
(
13
),
6872
6880
(
2019
).
47.
J.
Shin
,
B.
Jeong
,
J.
Kim
,
V. B.
Nam
,
Y.
Yoon
,
J.
Jung
,
S.
Hong
,
H.
Lee
,
H.
Eom
,
J.
Yeo
et al, “
Sensitive wearable temperature sensor with seamless monolithic integration
,”
Adv. Mater.
32
(
2
),
1905527
(
2020
).
48.
S.
Han
,
J.
Kim
,
S. M.
Won
,
Y.
Ma
,
D.
Kang
,
Z.
Xie
,
K.-T.
Lee
,
H. U.
Chung
,
A.
Banks
, and
S.
Min
et al, “
Battery-free, wireless sensors for full-body pressure and temperature mapping
,”
Sci. Transl. Med.
10
(
435
),
eaan4950
(
2018
).
49.
H.
Xu
,
W.
Zheng
,
Y.
Zhang
,
Y.
Zhao
,
W.
Wang
,
Y.
Yuan
,
J.
Zhang
,
Z.
Huo
,
Y.
Wang
, and
N.
Zhao
, “
A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation
,”
Research Square preprint
(
2023
).
50.
X.
Ni
,
W.
Ouyang
,
H.
Jeong
,
J.-T.
Kim
,
A.
Tzavelis
,
A.
Mirzazadeh
,
C.
Wu
,
J. Y.
Lee
,
M.
Keller
,
C. K.
Mummidisetty
,
M.
Patel
,
N.
Shawen
,
J.
Huang
,
H.
Chen
,
S.
Ravi
,
J.-K.
Chang
,
K.
Lee
,
Y.
Wu
,
F.
Lie
,
Y. J.
Kang
,
J. U.
Kim
,
L. P.
Chamorro
,
A. R.
Banks
,
A.
Bharat
,
A.
Jayaraman
,
S.
Xu
, and
J. A.
Rogers
, “
Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
19
),
e2026610118
(
2021
).
51.
C. M.
Alexander
,
L. E.
Teller
, and
J. B.
Gross
, “
Principles of pulse oximetry: Theoretical and practical considerations
,”
Anesth. Analg.
68
(
3
),
368
376
(
1989
).
52.
S.
Shah
,
K.
Majmudar
,
A.
Stein
,
N.
Gupta
,
S.
Suppes
,
M.
Karamanis
,
J.
Capannari
,
S.
Sethi
, and
C.
Patte
, “
Novel use of home pulse oximetry monitoring in COVID‐19 patients discharged from the emergency department identifies need for hospitalization
,”
Acad. Emerg. Med.
27
(
8
),
681
692
(
2020
).
53.
F.
Shaffer
and
J. P.
Ginsberg
, “
An overview of heart rate variability metrics and norms
,”
Front. Public Health
5
,
258
(
2017
).
54.
D.
Kaliyaperumal
,
R.
Karthikeyan
,
M.
Alagesan
, and
S.
Ramalingam
, “
Characterization of cardiac autonomic function in COVID-19 using heart rate variability: A hospital based preliminary observational study
,”
J. Basic Clin. Physiol. Pharmacol.
32
(
3
),
247
253
(
2021
).
55.
M. B.
Mol
,
M. T.
Strous
,
F. H.
van Osch
,
F. J.
Vogelaar
,
D. G.
Barten
,
M.
Farchi
,
N. A.
Foudraine
, and
Y.
Gidron
, “
Heart-rate-variability (HRV), predicts outcomes in COVID-19
,”
PLoS One
16
(
10
),
e0258841
(
2021
).
56.
F.
Hasty
,
G.
García
,
H.
Dávila
,
S. H.
Wittels
,
S.
Hendricks
, and
S.
Chong
, “
Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients
,”
Mil. Med.
186
(
1–2
),
e34
e38
(
2021
).
57.
A.
Gracia-Perez-Bonfils
,
O.
Martinez-Perez
,
E.
Llurba
, and
E.
Chandraharan
, “
Fetal heart rate changes on the cardiotocograph trace secondary to maternal COVID-19 infection
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
252
,
286
293
(
2020
).
58.
T.
Tamura
, “
Current progress of photoplethysmography and SPO2 for health monitoring
,”
Biomed. Eng. Lett.
9
(
1
),
21
36
(
2019
).
59.
M.
Nitzan
,
A.
Romem
, and
R.
Koppel
, “
Pulse oximetry: Fundamentals and technology update
,”
Med. Devices
7
,
231
(
2014
).
60.
A.
Gürün Kaya
,
M.
Öz
,
I.
Akdemir Kalkan
,
E.
Gülten
,
G.
Çınar
,
A.
Azap
, and
A.
Kaya
, “
Is pulse oximeter a reliable tool for non‐critically ill patients with COVID‐19?
,”
Int. J. Clin. Pract.
75
(
12
),
e14983
(
2021
).
61.
Y.
Mendelson
and
C.
Pujary
, “
Measurement site and photodetector size considerations in optimizing power consumption of a wearable reflectance pulse oximeter
,” in
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEEE
,
2003
).
62.
R.
Wang
,
G.
Blackburn
,
M.
Desai
,
D.
Phelan
,
L.
Gillinov
,
P.
Houghtaling
, and
M.
Gillinov
, “
Accuracy of wrist-worn heart rate monitors
,”
JAMA Cardiol.
2
(
1
),
104
106
(
2017
).
63.
A.
Shcherbina
,
C. M.
Mattsson
,
D.
Waggott
,
H.
Salisbury
,
J. W.
Christle
,
T.
Hastie
,
M. T.
Wheeler
, and
E. A.
Ashley
, “
Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort
,”
J. Pers. Med.
7
(
2
),
3
(
2017
).
64.
S.
Preejith
,
A. S.
Ravindran
,
R.
Hajare
,
J.
Joseph
, and
M.
Sivaprakasam
, “
A wrist worn SpO2 monitor with custom finger probe for motion artifact removal
,” in
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
2016
.
65.
C.
Phillips
,
D.
Liaqat
,
M.
Gabel
, and
E.
de Lara
, “
WristO2: Reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters
,” in
IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops 2021)
2021
.
66.
B.
Bent
,
B. A.
Goldstein
,
W. A.
Kibbe
, and
J. P.
Dunn
, “
Investigating sources of inaccuracy in wearable optical heart rate sensors
,”
npj Digital Med.
3
(
1
),
18
(
2020
).
67.
D.-H.
Kim
,
N.
Lu
,
R.
Ma
,
Y.-S.
Kim
,
R.-H.
Kim
,
S.
Wang
,
J.
Wu
,
S. M.
Won
,
H.
Tao
,
A.
Islam
,
K. J.
Yu
,
T-i
Kim
,
R.
Chowdhury
,
M.
Ying
,
L.
Xu
,
M.
Li
,
H.-J.
Chung
,
H.
Keum
,
M.
McCormick
,
P.
Liu
,
Y.-W.
Zhang
,
F. G.
Omenetto
,
Y.
Huang
,
T.
Coleman
, and
J. A.
Rogers
, “
Epidermal electronics
,”
Science
333
(
6044
),
838
843
(
2011
).
68.
A. Y.
Rwei
,
W.
Lu
,
C.
Wu
,
K.
Human
,
E.
Suen
,
D.
Franklin
,
M.
Fabiani
,
G.
Gratton
,
Z.
Xie
,
Y.
Deng
et al, “
A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
50
),
31674
31684
(
2020
).
69.
S.
Cai
,
X.
Xu
,
W.
Yang
,
J.
Chen
, and
X.
Fang
, “
Materials and designs for wearable photodetectors
,”
Adv. Mater.
31
(
18
),
1808138
(
2019
).
70.
H.
Zhang
and
J. A.
Rogers
, “
Recent advances in flexible inorganic light emitting diodes: From materials design to integrated optoelectronic platforms
,”
Adv. Opt. Mater
7
(
2
),
1800936
(
2019
).
71.
P. C. Y.
Chow
and
T.
Someya
, “
Organic photodetectors for next‐generation wearable electronics
,”
Adv. Mater.
32
(
15
),
1902045
(
2020
).
72.
G.
Lu
,
F.
Yang
,
J. A.
Taylor
, and
J. F.
Stein
, “
A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects
,”
J. Med. Eng. Technol.
33
(
8
),
634
641
(
2009
).
73.
H. C.
Ates
,
A. K.
Yetisen
,
F.
Güder
, and
C.
Dincer
, “
Wearable devices for the detection of COVID-19
,”
Nat. Electron.
4
(
1
),
13
14
(
2021
).
74.
T.
Yokota
,
P.
Zalar
,
M.
Kaltenbrunner
,
H.
Jinno
,
N.
Matsuhisa
,
H.
Kitanosako
,
Y.
Tachibana
,
W.
Yukita
,
M.
Koizumi
, and
T.
Someya
, “
Ultraflexible organic photonic skin
,”
Sci. Adv.
2
(
4
),
e1501856
(
2016
).
75.
Y.
Khan
,
D.
Han
,
A.
Pierre
,
J.
Ting
,
X.
Wang
,
C. M.
Lochner
,
G.
Bovo
,
N.
Yaacobi-Gross
,
C.
Newsome
,
R.
Wilson
, and
A. C.
Arias
, “
A flexible organic reflectance oximeter array
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
47
),
E11015
E11024
(
2018
).
76.
J.
Kim
,
P.
Gutruf
,
A. M.
Chiarelli
,
S. Y.
Heo
,
K.
Cho
,
Z.
Xie
,
A.
Banks
,
S.
Han
,
K. I.
Jang
,
J. W.
Lee
,
K.-T.
Lee
,
X.
Fen
,
Y.
Huan
,
M.
Fabiani
,
G.
Gratton
,
U.
Paik
, and
J. A.
Rogers
, “
Miniaturized battery‐free wireless systems for wearable pulse oximetry
,”
Adv. Funct. Mater.
27
(
1
),
1604373
(
2017
).
77.
C.-J.
Lim
and
J.-W.
Park
, “
Wearable transcutaneous oxygen sensor for health monitoring
,”
Sens. Actuators, A
298
,
111607
(
2019
).
78.
S.
Abdollahi
,
E. J.
Markvicka
,
C.
Majidi
, and
A. W.
Feinberg
, “
3D printing silicone elastomer for patient‐specific wearable pulse oximeter
,”
Adv. Healthcare Mater.
9
(
15
),
1901735
(
2020
).
79.
S.-H.
Bae
,
D.
Kim
,
S.-Y.
Chang
,
J.
Hur
,
H.
Kim
,
J.-W.
Lee
,
B.
Zhu
,
T.-H.
Han
,
C.
Choi
,
D. L.
Huffaker
,
D. D.
Carlo
,
Y.
Yang
, and
Y. S.
Rim
, “
Hybrid integrated photomedical devices for wearable vital sign tracking
,”
ACS Sens.
5
(
6
),
1582
1588
(
2020
).
80.
M.
Xu
and
L. V.
Wang
, “
Photoacoustic imaging in biomedicine
,”
Rev. Sci. Instrum.
77
(
4
),
041101
(
2006
).
81.
L. V.
Wang
and
S.
Hu
, “
Photoacoustic tomography: In vivo imaging from organelles to organs
,”
Science
335
(
6075
),
1458
1462
(
2012
).
82.
M.
Li
,
Y.
Tang
, and
J.
Yao
, “
Photoacoustic tomography of blood oxygenation: A mini review
,”
Photoacoustics
10
,
65
73
(
2018
).
83.
R.
Bulsink
,
M.
Kuniyil Ajith Singh
,
M.
Xavierselvan
,
S.
Mallidi
,
W.
Steenbergen
, and
K. J.
Francis
, “
Oxygen saturation imaging using LED-based photoacoustic system
,”
Sensors
21
(
1
),
283
(
2021
).
84.
J.
Dunn
,
L.
Kidzinski
,
R.
Runge
,
D.
Witt
,
J. L.
Hicks
,
S. M.
Schüssler-Fiorenza Rose
,
X.
Li
,
A.
Bahmani
,
S. L.
Delp
,
T.
Hastie
, and
M. P.
Snyder
, “
Wearable sensors enable personalized predictions of clinical laboratory measurements
,”
Nat. Med.
27
(
6
),
1105
1112
(
2021
).
85.
S.
Ryu
,
P.
Lee
,
J. B.
Chou
,
R.
Xu
,
R.
Zhao
,
A. J.
Hart
, and
S.-G.
Kim
, “
Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion
,”
ACS Nano
9
(
6
),
5929
5936
(
2015
).
86.
C.
Wang
,
X.
Li
,
H.
Hu
,
L.
Zhang
,
Z.
Huang
,
M.
Lin
,
Z.
Zhang
,
Z.
Yin
,
B.
Huang
,
H.
Gong
,
S.
Bhaskaran
,
Y.
Gu
,
M.
Makihata
,
Y.
Guo
,
Y.
Lei
,
Y.
Chen
,
C.
Wang
,
Y.
Li
,
T.
Zhang
,
Z.
Chen
,
A. P.
Pisano
,
L.
Zhang
,
Q.
Zhou
, and
S.
Xu
, “
Monitoring of the central blood pressure waveform via a conformal ultrasonic device
,”
Nat. Biomed. Eng.
2
(
9
),
687
695
(
2018
).
87.
T. Q.
Trung
,
S.
Ramasundaram
,
B. U.
Hwang
, and
N. E.
Lee
, “
An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics
,”
Adv. Mater.
28
(
3
),
502
509
(
2016
).
88.
T.
Kim
,
J.
Park
,
J.
Sohn
,
D.
Cho
, and
S.
Jeon
, “
Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes
,”
ACS Nano
10
(
4
),
4770
4778
(
2016
).
89.
J.
Min
,
J. R.
Sempionatto
,
H.
Teymourian
,
J.
Wang
, and
W.
Gao
, “
Wearable electrochemical biosensors in North America
,”
Biosens. Bioelectron.
172
,
112750
(
2021
).
90.
Z.
Wang
,
Z.
Hao
,
X.
Wang
,
C.
Huang
,
Q.
Lin
,
X.
Zhao
, and
Y.
Pan
, “
A flexible and regenerative aptameric graphene–Nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications
,”
Adv. Funct. Mater.
31
(
4
),
2005958
(
2021
).
91.
Z.
Hao
,
Y.
Luo
,
C.
Huang
,
Z.
Wang
,
G.
Song
,
Y.
Pan
,
X.
Zhao
, and
S.
Liu
, “
An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids
,”
Small
17
(
29
),
2101508
(
2021
).
92.
R. M.
Torrente-Rodríguez
,
H.
Lukas
,
J.
Tu
,
J.
Min
,
Y.
Yang
,
C.
Xu
,
H. B.
Rossiter
, and
W.
Gao
, “
SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring
,”
Matter
3
(
6
),
1981
1998
(
2020
).
93.
T.
Tan
,
B.
Khoo
,
E. G.
Mills
,
M.
Phylactou
,
B.
Patel
,
P. C.
Eng
,
L.
Thurston
,
B.
Muzi
,
K.
Meeran
,
A. T.
Prevost
,
A. N.
Comninos
,
A.
Abbara
, and
W. S.
Dhillo
, “
Association between high serum total cortisol concentrations and mortality from COVID-19
,”
Lancet Diabetes Endocrinol.
8
(
8
),
659
660
(
2020
).
94.
Y.
Zheng
,
R.
Omar
,
R.
Zhang
,
N.
Tang
,
M.
Khatib
,
Q.
Xu
,
Y.
Milyutin
,
W.
Saliba
,
Y. Y.
Broza
,
W.
Wu
,
M.
Yuan
, and
H.
Haick
, “
A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids
,”
Adv. Mater.
34
(
10
),
2108607
(
2022
).
95.
O.
Parlak
,
S. T.
Keene
,
A.
Marais
,
V. F.
Curto
, and
A.
Salleo
, “
Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing
,”
Sci. Adv.
4
(
7
),
eaar2904
(
2018
).
96.
R. M.
Torrente-Rodríguez
,
J.
Tu
,
Y.
Yang
,
J.
Min
,
M.
Wang
,
Y.
Song
,
Y.
Yu
,
C.
Xu
,
C.
Ye
,
W. W.
IsHak
, and
W.
Gao
, “
Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system
,”
Matter
2
(
4
),
921
937
(
2020
).
97.
B.
Wang
,
C.
Zhao
,
Z.
Wang
,
K.-A.
Yang
,
X.
Cheng
,
W.
Liu
,
W.
Yu
,
S.
Lin
,
Y.
Zhao
,
K. M.
Cheung
,
H.
Lin
,
H.
Hojaiji
,
P. S.
Weiss
,
M. N.
Stojanović
,
A. J.
Tomiyama
,
A. M.
Andrews
, and
S.
Emaminejad
, “
Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring
,”
Sci. Adv.
8
(
1
),
eabk0967
(
2022
).
98.
H.
Li
,
G.
Wu
,
Z.
Weng
,
H.
Sun
,
R.
Nistala
, and
Y.
Zhang
, “
Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids
,”
ACS Sens.
6
(
6
),
2181
2190
(
2021
).
99.
S.
Montazersaheb
,
S. M.
Hosseiniyan Khatibi
,
M. S.
Hejazi
,
V.
Tarhriz
,
A.
Farjami
,
F.
Ghasemian Sorbeni
,
R.
Farahzadi
, and
T.
Ghasemnejad
, “
COVID-19 infection: An overview on cytokine storm and related interventions
,”
Virol. J.
19
(
1
),
92
(
2022
).
100.
S.
Hojyo
,
M.
Uchida
,
K.
Tanaka
,
R.
Hasebe
,
Y.
Tanaka
,
M.
Murakami
, and
T.
Hirano
, “
How COVID-19 induces cytokine storm with high mortality
,”
Inflammation Regener.
40
(
1
),
37
(
2020
).
101.
X.
Chen
,
B.
Zhao
,
Y.
Qu
,
Y.
Chen
,
J.
Xiong
,
Y.
Feng
,
D.
Men
,
Q.
Huang
,
Y.
Liu
,
B.
Yang
,
J.
Ding
, and
F.
Li
, “
Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients
,”
Clin. Infect. Dis.
71
(
8
),
1937
1942
(
2020
).
102.
C.
Huang
,
Y.
Wang
,
X.
Li
,
L.
Ren
,
J.
Zhao
,
Y.
Hu
,
L.
Zhang
,
G.
Fan
,
J.
Xu
,
X.
Gu
,
Z.
Cheng
,
T.
Yu
,
J.
Xia
,
Y.
Wei
,
W.
Wu
,
X.
Xie
,
W.
Yin
,
H.
Li
,
M.
Liu
,
Y.
Xiao
,
H.
Gao
,
L.
Guo
,
J.
Xie
,
G.
Wang
,
R.
Jiang
,
Z.
Gao
,
Q.
Jin
,
J.
Wang
, and
B.
Cao
, “
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
,”
Lancet
395
(
10223
),
497
506
(
2020
).
103.
J.
Liu
,
S.
Li
,
J.
Liu
,
B.
Liang
,
X.
Wang
,
H.
Wang
,
W.
Li
,
Q.
Tong
,
J.
Yi
,
L.
Zhao
,
L.
Xiong
,
C.
Guo
,
J.
Tian
,
J.
Luo
,
J.
Yao
,
R.
Pang
,
H.
Shen
,
C.
Peng
,
T.
Liu
,
Q.
Zhang
,
J.
Wu
,
L.
Xu
,
S.
Lu
,
B.
Wang
,
Z.
Weng
,
C.
Han
,
H.
Zhu
,
R.
Zhou
,
H.
Zhou
,
X.
Chen
,
P.
Ye
,
B.
Zhu
,
L.
Wang
,
W.
Zhou
,
S.
He
,
Y.
He
,
S.
Jie
,
P.
Wei
,
J.
Zhang
,
Y.
Lu
,
W.
Wang
,
L.
Zhang
,
L.
Li
,
F.
Zhou
,
J.
Wang
,
U.
Dittmer
,
M.
Lu
,
Y.
Hu
,
D.
Yang
, and
X.
Zheng
, “
Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients
,”
eBioMedicine
55
,
102763
(
2020
).
104.
T.
Liu
,
J.
Zhang
,
Y.
Yang
,
H.
Ma
,
Z.
Li
,
J.
Zhang
,
J.
Cheng
,
X.
Zhang
,
Y.
Zhao
,
Z.
Xia
,
L.
Zhang
,
G.
Wu
, and
J.
Yi
, “
The potential role of IL-6 in monitoring coronavirus disease 2019
,” medRXiv 3548761 (
2020
).
105.
D.
Wang
,
B.
Hu
,
C.
Hu
,
F.
Zhu
,
X.
Liu
,
J.
Zhang
,
B.
Wang
,
H.
Xiang
,
Z.
Cheng
,
Y.
Xiong
,
Y.
Zhao
,
Y.
Li
,
X.
Wang
, and
Z.
Peng
, “
Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China
,”
J. Am. Med. Assoc.
323
(
11
),
1061
1069
(
2020
).
106.
M.
Rahmati
and
M. A.
Moosavi
, “
Cytokine-targeted therapy in severely ill COVID-19 patients: Options and cautions
,”
Eurasian J. Med. Oncol.
4
(
2
),
179
181
(
2020
).
107.
V.
Thiviyanathan
and
D. G.
Gorenstein
, “
Aptamers and the next generation of diagnostic reagents
,”
Proteomics Clin. Appl.
6
(
11–12
),
563
573
(
2012
).
108.
C.
Han
,
C.
Duan
,
S.
Zhang
,
B.
Spiegel
,
H.
Shi
,
W.
Wang
,
L.
Zhang
,
R.
Lin
,
J.
Liu
,
Z.
Ding
, and
X.
Hou
, “
Digestive symptoms in COVID-19 patients with mild disease severity: Clinical presentation, stool viral RNA testing, and outcomes
,”
Am. J. Gastroenterol.
115
,
916
923
(
2020
).
109.
A. J.
Bandodkar
,
W. J.
Jeang
,
R.
Ghaffari
, and
J. A.
Rogers
, “
Wearable sensors for biochemical sweat analysis
,”
Annu. Rev. Anal. Chem.
12
(
1
),
1
22
(
2019
).
110.
A. J.
Bandodkar
,
P.
Gutruf
,
J.
Choi
,
K.
Lee
,
Y.
Sekine
,
J. T.
Reeder
,
W. J.
Jeang
,
A. J.
Aranyosi
,
S. P.
Lee
,
J. B.
Model
,
R.
Ghaffari
,
C.-J.
Su
,
J. P.
Leshock
,
T.
Ray
,
A.
Verrillo
,
K.
Thomas
,
V.
Krishnamurthi
,
S.
Han
,
J.
Kim
,
S.
Krishnan
,
T.
Hang
, and
J. A.
Rogers
, “
Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat
,”
Sci. Adv.
5
(
1
),
eaav3294
(
2019
).
111.
K. Y.
Goud
,
C.
Moonla
,
R. K.
Mishra
,
C.
Yu
,
R.
Narayan
,
I.
Litvan
, and
J.
Wang
, “
Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: Toward Parkinson management
,”
ACS Sens.
4
(
8
),
2196
2204
(
2019
).
112.
M.
Parrilla
,
M.
Cuartero
,
S.
Padrell Sánchez
,
M.
Rajabi
,
N.
Roxhed
,
F.
Niklaus
, and
G. A.
Crespo
, “
Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection
,”
Anal. Chem.
91
(
2
),
1578
1586
(
2018
).
113.
Z.
Wang
,
J.
Luan
,
A.
Seth
,
L.
Liu
,
M.
You
,
P.
Gupta
,
P.
Rathi
,
Y.
Wang
,
S.
Cao
,
Q.
Jiang
,
X.
Zhang
,
R.
Gupta
,
Q.
Zhou
,
J. J.
Morrissey
,
E. L.
Scheller
,
J. S.
Rudra
, and
S.
Singamaneni
, “
Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid
,”
Nat. Biomed. Eng.
5
(
1
),
64
76
(
2021
).
114.
W.
Gao
,
S.
Emaminejad
,
H. Y. Y.
Nyein
,
S.
Challa
,
K.
Chen
,
A.
Peck
,
H. M.
Fahad
,
H.
Ota
,
H.
Shiraki
,
D.
Kiriya
et al, “
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
,”
Nature
529
(
7587
),
509
514
(
2016
).
115.
G.
Quer
,
J. M.
Radin
,
M.
Gadaleta
,
K.
Baca-Motes
,
L.
Ariniello
,
E.
Ramos
,
V.
Kheterpal
,
E. J.
Topol
, and
S. R.
Steinhubl
, “
Wearable sensor data and self-reported symptoms for COVID-19 detection
,”
Nat. Med.
27
(
1
),
73
77
(
2021
).
116.
B.
Shan
,
Y. Y.
Broza
,
W.
Li
,
Y.
Wang
,
S.
Wu
,
Z.
Liu
,
J.
Wang
,
S.
Gui
,
L.
Wang
,
Z.
Zhang
,
W.
Liu
,
S.
Zhou
,
W.
Jin
,
Q.
Zhang
,
D.
Hu
,
L.
Lin
,
Q.
Zhang
,
W.
Li
,
J.
Wang
,
H.
Liu
,
Y.
Pan
, and
H.
Haick
, “
Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath
,”
ACS Nano
14
(
9
),
12125
12132
(
2020
).
117.
L.
Rui
,
S.
Chen
,
K.
Ho
,
M.
Rantz
, and
M.
Skubic
, “
Estimation of human walking speed by Doppler radar for elderly care
,”
J. Ambient Intell. Smart Environ.
9
(
2
),
181
191
(
2017
).
118.
K. T.
Tanweer
,
S. R.
Hasan
, and
A. M.
Kamboh
, “
Motion artifact reduction from PPG signals during intense exercise using filtered X-LMS
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
,
2017
.
119.
Z.
Zhang
,
Z.
Pi
, and
B.
Liu
, “
TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise
,”
IEEE. Trans. Biomed. Eng.
62
(
2
),
522
531
(
2014
).
120.
R.
Yousefi
,
M.
Nourani
,
S.
Ostadabbas
, and
I.
Panahi
, “
A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors
,”
IEEE J. Biomed. Health Inform.
18
(
2
),
670
681
(
2013
).
121.
D.
Bian
,
P.
Mehta
, and
N.
Selvaraj
, “
Respiratory rate estimation using PPG: A deep learning approach
,” in paper
presented at the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
,
2020
.
122.
Y.
Cho
,
S. J.
Julier
,
N.
Marquardt
, and
N.
Bianchi-Berthouze
, “
Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging
,”
Biomed. Opt. Express
8
(
10
),
4480
4503
(
2017
).
123.
H.
Wu
,
W.
Ruan
,
J.
Wang
,
D.
Zheng
,
B.
Liu
,
Y.
Geng
,
X.
Chai
,
J.
Chen
,
K.
Li
,
S.
Li
, and
S.
Helal
, “
Interpretable machine learning for COVID-19: An empirical study on severity prediction task
,”
IEEE Trans. Artif. Intell.
(
2021
).
124.
A.
Dairi
,
F.
Harrou
, and
Y.
Sun
, “
Deep generative learning-based 1-svm detectors for unsupervised COVID-19 infection detection using blood tests
,”
IEEE Trans. Instrum. Meas.
71
,
2500211
(
2021
).
125.
R. A.
Mohammedqasem
,
H.
Mohammedqasim
, and
O.
Ata
, “
Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network
,”
Comput. Electr. Eng.
100
,
107971
(
2022
).
126.
M.
Otoom
,
N.
Otoum
,
M. A.
Alzubaidi
,
Y.
Etoom
, and
R.
Banihani
, “
An IoT-based framework for early identification and monitoring of COVID-19 cases
,”
Biomed. Signal Process. Control
62
,
102149
(
2020
).
127.
Y.
Gao
,
G.-Y.
Cai
,
W.
Fang
,
H.-Y.
Li
,
S.-Y.
Wang
,
L.
Chen
,
Y.
Yu
,
D.
Liu
,
S.
Xu
,
P.-F.
Cui
,
S.-Q.
Zeng
,
X.-X.
Feng
,
R.-D.
Yu
,
Y.
Wang
,
Y.
Yuan
,
X.-F.
Jiao
,
J.-H.
Chi
,
J.-H.
Liu
,
R.-Y.
Li
,
X.
Zheng
,
C.-Y.
Song
,
N.
Jin
,
W.-J.
Gong
,
X.-Y.
Liu
,
L.
Huang
,
X.
Tian
,
L.
Li
,
H.
Xing
,
D.
Ma
,
C.-R.
Li
,
F.
Ye
, and
Q.-L.
Gao
, “
Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
,”
Nat. Commun.
11
(
1
),
5033
(
2020
).
128.
B.
Shen
,
X.
Yi
,
Y.
Sun
,
X.
Bi
,
J.
Du
,
C.
Zhang
,
S.
Quan
,
F.
Zhang
,
R.
Sun
,
L.
Qian
,
W.
Ge
,
W.
Liu
,
S.
Liang
,
H.
Chen
,
Y.
Zhang
,
J.
Li
,
J.
Xu
,
Z.
He
,
B.
Chen
,
J.
Wang
,
H.
Yan
,
Y.
Zheng
,
D.
Wang
,
J.
Zhu
,
Z.
Kong
,
Z.
Kang
,
X.
Liang
,
X.
Ding
,
G.
Ruan
,
N.
Xiang
,
X.
Cai
,
H.
Gao
,
L.
Li
,
S.
Li
,
Q.
Xiao
,
T.
Lu
,
Y.
Zhu
,
H.
Liu
,
H.
Chen
, and
T.
Guo
, “
Proteomic and metabolomic characterization of COVID-19 patient sera
,”
Cell
182
(
1
),
59
72.
(
2020
).
129.
Y.
Xiong
,
Y.
Ma
,
L.
Ruan
,
D.
Li
,
C.
Lu
,
L.
Huang
, and
National Traditional Chinese Medicine Medical Team
, “
Comparing different machine learning techniques for predicting COVID-19 severity
,”
Infect. Dis. Poverty
11
(
1
),
19
(
2022
).
130.
D. M.
Del Valle
,
S.
Kim-Schulze
,
H.-H.
Huang
,
N. D.
Beckmann
,
S.
Nirenberg
,
B.
Wang
,
Y.
Lavin
,
T. H.
Swartz
,
D.
Madduri
,
A.
Stock
,
T. U.
Marron
,
H.
Xie
,
M.
Patel
,
K.
Tuballes
,
O. V.
Oekelen
,
A.
Rahman
,
P.
Kovatch
,
J. A.
Aberg
,
E.
Schadt
,
S.
Jagannath
,
M.
Mazumdar
,
A. W.
Charney
,
A.
Firpo-Betancourt
,
D. R.
Mend
,
J.
Jhang
,
D.
Reich
,
K.
Sigel
,
C.
Cordon-Cardo
,
M.
Feldmann
,
S.
Parekh
,
M.
Merad
, and
S.
Gnjatic
, “
An inflammatory cytokine signature predicts COVID-19 severity and survival
,”
Nat. Med.
26
(
10
),
1636
1643
(
2020
).
131.
F. F.
Abir
,
M. E.
Chowdhury
,
M. I.
Tapotee
,
A.
Mushtak
,
A.
Khandakar
,
S.
Mahmud
, and
M. A.
Hasan
, “PCovNet+: A CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based COVID-19 detection,”
Eng. Appl. Artif. Intell.
122
,
106130
(
2023
).
132.
Q.
Yang
,
J.
Li
,
Z.
Zhang
,
X.
Wu
,
T.
Liao
,
S.
Yu
,
Z.
You
,
X.
Hou
,
J.
Ye
,
G.
Liu
,
S.
Ma
,
G.
Xie
,
Y.
Zhou
,
M.
Li
,
M.
Wu
,
Y.
Feng
,
W.
Wang
,
L.
Li
,
D.
Xie
,
Y.
Hu
,
X.
Liu
,
B.
Wang
,
S.
Zhao
,
L.
Li
,
C.
Luo
,
T.
Tang
,
H.
Wu
,
T.
Hu
,
G.
Yang
,
B.
Luo
,
L.
Li
,
X.
Yang
,
Q.
Li
,
Z.
Xu
,
H.
Wu
, and
J.
Sun
, “
Clinical characteristics and a decision tree model to predict death outcome in severe COVID-19 patients
,”
BMC Infect. Dis.
21
(
1
),
783
(
2021
).
133.
C. M.
Yeşilkanat
, “
Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm
,”
Chaos, Solitons Fractals
140
,
110210
(
2020
).
134.
V. A. D. F.
Barbosa
,
J. C.
Gomes
,
M. A.
de Santana
,
C. L.
de Lima
,
R. B.
Calado
,
C. R.
Bertoldo Junior
,
J. E. D. A.
Albuquerque
,
R. G.
de Souza
,
R. J. E.
de Araújo
,
L. A. R.
Mattos Junior
,
R. E.
de Souza
, and
W. P. D.
Santos
, “
COVID-19 rapid test by combining a random forest-based web system and blood tests
,”
J. Biomol. Struct. Dyn.
40
,
11948
(
2021
).
135.
B.
Shi
,
H.
Ye
,
J.
Zheng
,
Y.
Zhu
,
A. A.
Heidari
,
L.
Zheng
,
H.
Chen
,
L.
Wang
, and
P.
Wu
, “
Early recognition and discrimination of COVID-19 severity using slime mould support vector machine for medical decision-making
,”
IEEE Access
9
,
121996
122015
(
2021
).
136.
T. B.
Alakus
and
I.
Turkoglu
, “
Comparison of deep learning approaches to predict COVID-19 infection
,”
Chaos, Solitons Fractals
140
,
110120
(
2020
).
137.
See https://www.sibelhealth.com/anne-one for “
ANNE One Sensor
.”
138.
Z.
Gong
,
P.
Zhong
, and
W.
Hu
, “
Diversity in machine learning
,”
IEEE Access
7
,
64323
64350
(
2019
).
139.
S.
Imani
,
A. J.
Bandodkar
,
A. M.
Vinu Mohan
,
R.
Kumar
,
S.
Yu
,
J.
Wang
, and
P. P.
Mercier
, “
A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring
,”
Nat. Commun.
7
(
1
),
11650
(
2016
).
140.
L. D.
Blackman
,
P. A.
Gunatillake
,
P.
Cass
, and
K. E.
Locock
, “
An introduction to zwitterionic polymer behavior and applications in solution and at surfaces
,”
Chem. Soc. Rev.
48
(
3
),
757
770
(
2019
).
141.
D.
Chan
,
J. C.
Chien
,
E.
Axpe
,
L.
Blankemeier
,
S. W.
Baker
,
S.
Swaminathan
,
V. A.
Piunova
,
D. Y.
Zubarev
,
C. L.
Maikawa
,
A. K.
Grosskopf
,
J. L.
Mann
,
H. T.
Soh
, and
E. A.
Appel
, “
Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors
,”
Adv. Mater.
34
,
2109764
(
2022
).
142.
A.
Koh
,
D.
Kang
,
Y.
Xue
,
S.
Lee
,
R. M.
Pielak
,
J.
Kim
,
T.
Hwang
,
S.
Min
,
A.
Banks
,
P.
Bastien
,
M. C.
Manco
,
L.
Wang
,
K. R.
Ammann
,
K.-I.
Jang
,
P.
Won
,
S.
Han
,
R.
Ghaffari
,
U.
Paik
,
M. J.
Slepian
,
G.
Balooch
,
Y.
Huang
, and
J. A.
Rogers
, “
A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
,”
Sci. Transl. Med.
8
(
366
),
366ra165
(
2016
).
143.
A.
Bandodkar
,
S.
Lee
,
I.
Huang
,
W.
Li
,
S.
Wang
,
C.-J.
Su
,
W.
Jeang
,
T.
Hang
,
S.
Mehta
,
N.
Nyberg
,
P.
Gutruf
,
J.
Choi
,
J.
Koo
,
J. T.
Reeder
,
R.
Tseng
,
R.
Ghaffari
, and
J. A.
Rogers
, “
Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems
,”
Nat. Electron.
3
(
9
),
554
562
(
2020
).
144.
J.
Heikenfeld
,
A.
Jajack
,
B.
Feldman
,
S. W.
Granger
,
S.
Gaitonde
,
G.
Begtrup
, and
B. A.
Katchman
, “
Accessing analytes in biofluids for peripheral biochemical monitoring
,”
Nat. Biotechnol.
37
(
4
),
407
419
(
2019
).
145.
J. W.
Kim
,
S.-M.
Moon
,
S.-U.
Kang
, and
B.
Jang
, “
Effective privacy-preserving collection of health data from a user's wearable device
,”
Appl. Sci.
10
(
18
),
6396
(
2020
).
146.
C.
Kang
,
H.
Jung
, and
Y.
Lee
, “
Towards machine learning with zero real-world data
,” in
The 5th ACM Workshop on Wearable Systems and Applications
,
2019
.
You do not currently have access to this content.