Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.

1.
M. J.
Harrington
and
P.
Fratzl
, “
Natural load-bearing protein materials
,”
Prog. Mater. Sci.
120
,
100767
(
2021
).
2.
U. G. K.
Wegst
,
H.
Bai
,
E.
Saiz
,
A. P.
Tomsia
, and
R. O.
Ritchie
, “
Bioinspired structural materials
,”
Nat. Mater.
14
(
1
),
23
36
(
2015
).
3.
S. J.
Blamires
,
P. T.
Spicer
, and
P. J.
Flanagan
, “
Spider silk biomimetics programs to inform the development of new wearable technologies
,”
Front. Mater.
7
,
29
(
2020
).
4.
S.
Salehi
and
T.
Scheibel
, “
Biomimetic spider silk fibres: From vision to reality
,”
Biochemist
40
(
1
),
4
7
(
2018
).
5.
T.
Lefèvre
and
M.
Auger
, “
Spider silk as a blueprint for greener materials: A review
,”
Int. Mater. Rev.
61
(
2
),
127
153
(
2016
).
6.
S.
Salehi
,
K.
Koeck
, and
T.
Scheibel
, “
Spider silk for tissue engineering applications
,”
Molecules
25
,
737
(
2020
).
7.
I. L.
Good
,
J. M.
Kenoyer
, and
R. H.
Meadow
, “
New evidence for early silk in the Indus civilization
,”
Archaeometry
51
(
3
),
457
466
(
2009
).
8.
D.
Kuhn
, “
Silk weaving in ancient China: From geometric figures to patterns of pictorial likeness
,”
Chin. Sci.
12
(
12
),
77
114
(
1995
).
9.
G.
Greco
,
V.
Mastellari
,
C.
Holland
, and
N. M.
Pugno
, “
Comparing modern and classical perspectives on spider silks and webs
,”
Perspect. Sci.
29
(
2
),
133
156
(
2021
).
10.
C.
Holland
,
K.
Numata
,
J.
Rnjak-Kovacina
, and
F. P.
Seib
, “
The biomedical use of silk: Past, present, future
,”
Adv. Healthcare Mater.
8
(
1
),
1800465
(
2019
).
11.
I.
Agnarsson
,
M.
Kuntner
, and
T. A.
Blackledge
, “
Bioprospecting finds the toughest biological material: Extraordinary silk from a giant Riverine Orb spider
,”
PLoS One
5
(
9
),
e11234
(
2010
).
12.
K.
Arakawa
,
N.
Kono
,
A. D.
Malay
,
A.
Tateishi
,
N.
Ifuku
,
H.
Masunaga
,
R.
Sato
,
K.
Tsuchiya
,
R.
Ohtoshi
,
D.
Pedrazzoli
,
T.
Ichikawa
,
S.
Fujita
,
M.
Fujiwara
,
M.
Tomita
, and
S. J.
Blamires
, “
1000 spider silkomes: Linking sequences to silk physical properties
,”
Sci. Adv.
6043
,
eabo6043
(
2022
).
13.
C.
Vepari
and
D. L.
Kaplan
, “
Silk as a biomaterial
,”
Prog. Polym. Sci.
32
(
8–9
),
991
1007
(
2007
).
14.
L.
Pan
,
F.
Wang
,
Y.
Cheng
,
W. R.
Leow
,
Y. W.
Zhang
,
M.
Wang
,
P.
Cai
,
B.
Ji
,
D.
Li
, and
X.
Chen
, “
A supertough electro-tendon based on spider silk composites
,”
Nat. Commun.
11
(
1
),
1332
(
2020
).
15.
B.
Xu
,
Y.
Yang
,
Y.
Yan
, and
B.
Zhang
, “
Bionics design and dynamics analysis of space webs based on spider predation
,”
Acta Astronaut.
159
,
294
307
(
2019
).
16.
T.
Yoshioka
,
T.
Tsubota
,
K.
Tashiro
,
A.
Jouraku
, and
T.
Kameda
, “
A study of the extraordinarily strong and tough silk produced by bagworms
,”
Nat. Commun.
10
(
1
),
1469
(
2019
).
17.
Y.
Yang
,
G.
Greco
,
D.
Maniglio
,
B.
Mazzolai
,
C.
Migliaresi
,
N.
Pugno
, and
A.
Motta
, “
Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation
,”
Mater. Sci. Eng. C
107
,
110197
(
2020
).
18.
A.
Dellaquila
,
G.
Greco
,
E.
Campodoni
,
M.
Mazzocchi
,
B.
Mazzolai
,
A.
Tampieri
,
N. M.
Pugno
, and
M.
Sandri
, “
Optimized production of a high-performance hybrid biomaterial: Biomineralized spider silk for bone tissue engineering
,”
J. Appl. Polym. Sci.
137
(
22
),
48739
(
2020
).
19.
K. Z.
Htut
,
A. M.
Alicea-serrano
,
S.
Singla
,
I.
Agnarsson
,
J. E.
Garb
,
M.
Kuntner
,
R. A.
Haney
,
M.
Marhabaie
,
T. A.
Blackledge
,
A.
Dhinojwala
, and
A.
Dhinojwala
, “
Correlation between protein secondary structure and mechanical performance for the ultra-tough dragline silk of Darwin's bark spider
,”
J. R. Soc. Interface
18
,
20210320
(
2021
).
20.
G.
Greco
and
N. M.
Pugno
, “
How spiders hunt heavy prey: The tangle web as a pulley and spider's lifting mechanics observed and quantified in the laboratory
,”
J. R. Soc. Interface
18
(
175
),
20200907
(
2021
).
21.
L.
Kundanati
,
N. G. D.
Novo
,
G.
Greco
,
G.
Greco
,
S.
Siboni
, and
C. D.
Volpe
, “
Multifunctional roles of hairs and spines in old man of the Andes cactus: Droplet distant coalescence and mechanical strength
,”
Phys. Fluids
34
,
012003
(
2022
).
22.
R.
Guarino
,
G.
Greco
,
B.
Mazzolai
, and
N. M.
Pugno
, “
Fluid-structure interaction study of spider's hair flow-sensing system
,”
Mater. Today Proc.
7
,
418
425
(
2019
).
23.
M.
Benzarti
,
M.
Ben Tkaya
,
C.
Pailler Mattei
, and
H.
Zahouani
, “
Hair mechanical properties depending on age and origin
,”
World Acad. Sci. Eng. Technol.
50
,
466
472
(
2011
).
24.
D. S.
Fudge
and
J. M.
Gosline
, “
Molecular design of the α-keratin composite: Insights from a matrix-free model, hagfish slime threads
,”
Proc. R. Soc. B
271
(
1536
),
291
299
(
2004
).
25.
A. H.
Barber
,
D.
Lu
, and
N. M.
Pugno
, “
Extreme strength observed in limpet teeth
,”
J. R. Soc. Interface
12
(
105
),
20141326
(
2015
).
26.
E.
Carrington
and
J. M.
Gosline
, “
Mechanical design of mussel byssus: Load cycle and strain rate dependence
,”
Amal. Malacol. Bull.
18
,
135
142
(
2004
).
27.
J. M.
Gosline
,
P. A.
Guerette
,
C. S.
Ortlepp
, and
K. N.
Savage
, “
The mechanical design of spider silks: From fibroin sequence to mechanical function
,”
J. Exp. Biol.
202
,
3295
3303
(
1999
).
28.
C. M.
Pollock
and
R. E.
Shadwick
, “
Relationship between body mass and biomechanical properties of limb tendons in adult mammals
,”
Am. J. Physiol. - Regul., Integr. Comp. Physiol.
266
(
3
),
R1016
R1021
(
1994
).
29.
M.
Feughelman
, “
Mechanical hysteresis in wool keratin fibers
,”
J. Macromol. Sci. Part B
38
,
37
41
(
1999
).
30.
C. H.
Bowen
,
B.
Dai
,
C. J.
Sargent
,
W.
Bai
,
P.
Ladiwala
,
H.
Feng
,
W.
Huang
,
D. L.
Kaplan
,
J. M.
Galazka
, and
F.
Zhang
, “
Recombinant spidroins fully replicate primary mechanical properties of natural spider silk
,”
Biomacromolecules
19
,
3853
3860
(
2018
).
31.
L.
Xu
,
T.
Lefèvre
,
K. E.
Orrell
,
Q.
Meng
,
M.
Auger
,
X. Q.
Liu
, and
J. K.
Rainey
, “
Structural and mechanical roles for the C-terminal nonrepetitive domain become apparent in recombinant spider aciniform silk
,”
Biomacromolecules
18
(
11
),
3678
3686
(
2017
).
32.
A.
Heidebrecht
,
L.
Eisoldt
,
J.
Diehl
,
A.
Schmidt
,
M.
Geffers
,
G.
Lang
, and
T.
Scheibel
, “
Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk
,”
Adv. Mater.
27
(
13
),
2189
2194
(
2015
).
33.
J. E.
Gordon
,
The Science of Structures and Materials
(
Times Books
,
New York
,
1988
).
34.
F.
Xu
,
C.
Yan
,
Y. T.
Shyng
,
H.
Chang
,
Y.
Xia
, and
Y.
Zhu
, “
Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS2
,”
Nanotechnology
25
(
32
),
325701
(
2014
).
35.
R.
Kumar
,
L. P.
Mikkelsen
,
H.
Lilholt
, and
B.
Madsen
, “
Understanding the mechanical response of glass and carbon fibres: Stress-strain analysis and modulus determination
,”
IOP Conf. Ser. Mater. Sci. Eng.
942
(
1
),
012033
(
2020
).
36.
D.
Lawlor
,
Introduction to Light Microscopy
,
1st ed.
(
Springer, Cham
,
2019
).
37.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge University Press
,
1999
).
38.
T. A.
Blackledge
,
R. A.
Cardullo
, and
C. Y.
Hayashi
, “
Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk
,”
Invertebr. Biol.
124
(
2
),
165
173
(
2005
).
39.
F.
Perez-Miles
,
New World Tarantulas
,
1st ed.
(
Springer Nature, Switzerland
,
2020
).
40.
F.
Perez-Miles
and
D.
Ortiz-Villatoro
, “
Tarantulas do not shoot silk from their legs: Experimental evidence in four species of new world tarantulas
,”
J. Exp. Biol.
215
(
10
),
1749
1752
(
2012
).
41.
D.
Stengel
,
J. B.
Addison
,
D.
Onofrei
,
N. U.
Huynh
,
G.
Youssef
, and
G. P.
Holland
, “
Hydration-induced β-sheet crosslinking of α-helical-rich spider prey-wrapping silk
,”
Adv. Funct. Mater.
31
(
13
),
2007161
(
2021
).
42.
M.
Wirth
,
J. O.
Wolff
,
E.
Appel
, and
S. N.
Gorb
, “
Ultrastructure of spider thread anchorages
,”
J. Morphol.
280
(
4
),
534
543
(
2019
).
43.
J. I.
Goldstein
,
D. E.
Newbury
,
J. R.
Michael
,
N. W. M.
Ritchie
,
J. H. J.
Scott
, and
D. C.
Joy
,
Scanning Electron Microscopy and X-Ray Microanalysis
,
4th ed.
(
Springer
,
New York
,
2018
).
44.
H.
Schatten
and
J.
Pawley
,
Biological Low-Voltage Scanning Electron Microscopy
(
Springer
,
2008
).
45.
Y.
Zhang
,
T.
Huang
,
D. M.
Jorgens
,
A.
Nickerson
,
L. J.
Lin
,
J.
Pelz
,
J. W.
Gray
,
C. S.
López
, and
X.
Nan
, “
Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy
,”
PLoS One
12
(
5
),
e0176839
(
2017
).
46.
J.
Kuo
,
Electron Microscopy
(
Humana Press Inc
.,
New Jersey
,
2007
).
47.
J. R.
Williams
and
A. A.
Clifford
,
Supercritical Fluid—Methods and Protocols
(
Humana Press Inc
.,
New Jersey
,
2000
).
48.
F.
Spizzo
,
G.
Greco
,
L.
Bianco
,
M.
Coïsson
, and
N. M.
Pugno
, “
Magnetostrictive and electroconductive stress‐sensitive functional spider silk
,”
Adv. Funct. Mater.
32
,
2207382
(
2022
).
49.
R. W.
WORK
, “
Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae)
,”
J. Exp. Biol.
118
(
1
),
379
404
(
1985
).
50.
T. A.
Blackledge
,
J. E.
Swindeman
, and
C. Y.
Hayashi
, “
Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus
,”
J. Exp. Biol.
208
(
10
),
1937
1949
(
2005
).
51.
I.
Krasnov
,
I.
Diddens
,
N.
Hauptmann
,
G.
Helms
,
M.
Ogurreck
,
T.
Seydel
,
S. S.
Funari
, and
M.
Müller
, “
Mechanical properties of silk: Interplay of deformation on macroscopic and molecular length scales
,”
Phys. Rev. Lett.
100
(
4
),
048104
(
2008
).
52.
L.
Cheng
,
J.
Shao
,
F.
Wang
,
Z.
Li
, and
F.
Dai
, “
Strain rate dependent mechanical behavior of B. Mori silk, A. assama silk, A. Pernyi silk and A. Ventricosus spider silk
,”
Mater. Des.
195
,
108988
(
2020
).
53.
L.
Eisoldt
,
A.
Smith
, and
T.
Scheibel
, “
Decoding the secrets of spider silk
,”
Mater. Today
14
(
3
),
80
86
(
2011
).
54.
F.
Vollrath
, “
Biology of spider silk
,”
Int. J. Biol. Macromol.
24
(
2–3
),
81
88
(
1999
).
55.
M. A.
Meyers
and
K. K.
Chawla
,
Mechanical Behaviour of Materials
(
Cambridge University Press
,
Cambridge
,
2009
).
56.
R.
Lakes
,
Viscoelastic Materials
(
Cambridge University Press
,
New York
,
2009
).
57.
M. W.
Denny
, “
The physical properties of spider's silk and their role in the design of orb-webs
,”
J. Exp. Biol.
65
,
483
506
(
1976
).
58.
K.
Yazawa
,
A. D.
Malay
,
H.
Masunaga
,
Y.
Norma-Rashid
, and
K.
Numata
, “
Simultaneous effect of strain rate and humidity on the structure and mechanical behavior of spider silk
,”
Commun. Mater.
1
(
1
),
10
(
2020
).
59.
I.
Ahmad
,
A.
Baharum
, and
I.
Abdullah
, “
Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composites
,”
J. Reinf. Plast. Compos.
25
(
9
),
957
965
(
2006
).
60.
W.
Yang
,
Y.
Yu
,
O.
Robert
,
M. A.
Meyers
,
W.
Yang
,
Y.
Yu
,
R. O.
Ritchie
, and
M. A.
Meyers
, “
On the strength of hair across species on the strength of hair across species
,”
Matter
2
(
1
),
136
149
(
2019
).
61.
H. C.
Kim
,
D.
Kim
,
J. Y.
Lee
,
L.
Zhai
, and
J.
Kim
, “
Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament
,”
Int. J. Precis. Eng. Manuf. - Green Technol.
6
(
3
),
567
575
(
2019
).
62.
G. M.
Swallowe
,
Mechanical Properties and Testing of Polymers
(
Springer
,
1999
).
63.
T. W.
Huseby
and
S.
Matsuoka
, “
Mechanical properties solid liquid polymers
,”
Mater. Sci. Eng.
1
,
321
(
1967
).
64.
D. C.
Kong
,
M. H.
Yang
,
X. S.
Zhang
,
Z. C.
Du
,
Q.
Fu
,
X. Q.
Gao
, and
J. W.
Gong
, “
Control of polymer properties by entanglement: A review
,”
Macromol. Mater. Eng.
306
(
12
),
2100536
(
2021
).
65.
J.
Yao
,
S.
Chen
,
Y.
Chen
,
B.
Wang
,
Q.
Pei
, and
H.
Wang
, “
Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers
,”
ACS Appl. Mater. Interfaces
9
(
24
),
20330
20339
(
2017
).
66.
F.
Vollrath
,
B.
Madsen
, and
Z.
Shao
, “
The effect of spinning conditions on the mechanics of a spider's dragline silk
,”
Proc. R. Soc. B
268
(
1483
),
2339
2346
(
2001
).
67.
R. J.
Young
,
C.
Holland
,
Z.
Shao
, and
F.
Vollrath
, “
Spinning conditions affect structure and properties of Nephila spider silk
,”
MRS Bull.
46
(
10
),
915
924
(
2021
).
68.
P. M.
Cunniff
,
S. A.
Fossey
,
M. A.
Auerbach
,
J. W.
Song
,
D. L.
Kaplan
,
W. W.
Adams
,
R. K.
Eby
,
D.
Mahoney
, and
D. L.
Vezie
, “
Mechanical and thermal properties of dragline silk from the spider Nephila clavipes
,”
Polym. Adv. Technol.
5
(
8
),
401
410
(
1994
).
69.
K.
Yazawa
and
U.
Sasaki
, “
Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity
,”
Int. J. Biol. Macromol.
168
,
550
557
(
2021
).
70.
K.
Yazawa
,
Y.
Tatebayashi
, and
Z.
Kajiura
, “
Eri silkworm spins mechanically robust silk fibers regardless of reeling speed
,”
J. Exp. Biol.
225
(
3
),
jeb243458
(
2022
).
71.
M.
Elices
,
G. V.
Guinea
,
G. R.
Plaza
,
J. I.
Real
, and
J.
Pérez-Rigueiro
, “
Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk
,”
J. Mater. Res.
21
(
8
),
1931
1938
(
2006
).
72.
J.
Perez-Rigueiro
, “
The effect of spinning forces on spider silk properties
,”
J. Exp. Biol.
208
(
14
),
2633
2639
(
2005
).
73.
B.
Schmuck
,
G.
Greco
,
F. G.
Bäcklund
,
N. M.
Pugno
,
J.
Johansson
, and
A.
Rising
, “
Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers
,”
Commun. Mater.
3
,
83
(
2022
).
74.
A. D.
Parkhe
,
S. K.
Seeley
,
K.
Gardner
,
L.
Thompson
, and
R. V.
Lewis
, “
Structural studies of spider silk proteins in the fiber
,”
J. Mol. Recognit.
10
(
1
),
1
6
(
1997
).
75.
Y.
Liu
,
Z.
Shao
, and
F.
Vollrath
, “
Relationships between supercontraction and mechanical properties of spider silk
,”
Nat. Mater.
4
(
12
),
901
905
(
2005
).
76.
M.
Elices
,
G. R.
Plaza
,
J.
Pérez-Rigueiro
, and
G. V.
Guinea
, “
The hidden link between supercontraction and mechanical behavior of spider silks
,”
J. Mech. Behav. Biomed. Mater.
4
(
5
),
658
669
(
2011
).
77.
G.
Greco
,
T.
Arndt
,
B.
Schmuck
,
J.
Francis
,
F. G.
Bäcklund
,
O.
Shilkova
,
A.
Barth
,
N.
Gonska
,
G.
Seisenbaeva
,
V.
Kessler
,
J.
Johansson
,
N. M.
Pugno
, and
A.
Rising
, “
Tyrosine residues mediate supercontraction in biomimetic spider silk
,”
Commun. Mater.
2
,
43
(
2021
).
78.
H.
Venkatesan
,
J.
Chen
,
H.
Liu
,
Y.
Kim
,
S.
Na
,
W.
Liu
, and
J.
Hu
, “
Artificial spider silk is smart like natural one: Having humidity-sensitive shape memory with superior recovery stress
,”
Mater. Chem. Front.
3
(
11
),
2472
2482
(
2019
).
79.
C.
Boutry
and
T. A.
Blackledge
, “
Evolution of supercontraction in spider silk: Structure-function relationship from tarantulas to orb-weavers
,”
J. Exp. Biol.
213
(
20
),
3505
3514
(
2010
).
80.
T.
Giesa
,
R.
Schuetz
,
P.
Fratzl
,
M. J.
Buehler
, and
A.
Masic
, “
Unraveling the molecular requirements for macroscopic silk supercontraction
,”
ACS Nano
11
(
10
),
9750
9758
(
2017
).
81.
J. R.
White
, “
Polymer ageing: Physics, chemistry or engineering? time to reflect
,”
C. R. Chim.
9
(
11–12
),
1396
1408
(
2006
).
82.
R.
Minguez
,
L.
Barrenetxea
,
E.
Solaberrieta
, and
E.
Lizundia
, “
A simple approach to understand the physical aging in polymers
,”
Eur. J. Phys.
40
(
1
),
015502
(
2019
).
83.
L. C.
Brinson
and
T. S.
Gates
, “
Effects of physical aging on long term creep of polymers and polymer matrix composites
,”
Int. J. Solids Struct.
32
(
6–7
),
827
846
(
1995
).
84.
B. R.
Frieberg
,
E.
Glynos
,
G.
Sakellariou
,
M.
Tyagi
, and
P. F.
Green
, “
Effect of molecular stiffness on the physical aging of polymers
,”
Macromolecules
53
(
18
),
7684
7690
(
2020
).
85.
E.
Lepore
,
M.
Isaia
,
S.
Mammola
, and
N.
Pugno
, “
The effect of ageing on the mechanical properties of the silk of the bridge spider Larinioides cornutus (Clerck, 1757)
,”
Sci. Rep.
6
,
24699
(
2016
).
86.
Z.
Shao
and
F.
Vollrath
, “
Surprising strength of silkworm silk
,”
Nature
418
(
6899
),
741
(
2002
).
87.
N.
Kono
,
H.
Nakamura
,
A.
Tateishi
,
K.
Numata
, and
K.
Arakawa
, “
The balance of crystalline and amorphous regions in the fibroin structure underpins the tensile strength of bagworm silk
,”
Zool. Lett.
7
(
1
),
11
(
2021
).
88.
N.
Kong
,
F.
Wan
,
W.
Dai
,
P.
Wu
,
C.
Su
,
C.
Peng
,
K.
Zheng
,
X.
Chen
,
S.
Ling
,
J.
Gong
, and
Y.
Yao
, “
A cuboid spider silk: Structure–function relationship and polypeptide signature
,”
Macromol. Rapid Commun.
41
(
6
),
1900583
(
2020
).
89.
I. C.
Um
,
H. Y.
Kweon
,
K. G.
Lee
,
D. W.
Ihm
,
J. H.
Lee
, and
Y. H.
Park
, “
Wet spinning of silk polymer. I. Effect of coagulation conditions on the morphological feature of filament
,”
Int. J. Biol. Macromol.
34
(
1–2
),
89
105
(
2004
).
90.
C.
Huang
,
H.
Niu
,
J.
Wu
,
Q.
Ke
,
X.
Mo
, and
T.
Lin
, “
Needleless electrospinning of polystyrene fibers with an oriented surface line texture
,”
J. Nanomater.
2012
,
473872
.
91.
W.
Liu
,
C.
Huang
, and
X.
Jin
, “
Electrospinning of grooved polystyrene fibers: Effect of solvent systems
,”
Nanoscale Res. Lett.
10
(
1
),
237
(
2015
).
92.
T.
Nakajima
,
Advanced Fiber Spinning Technology
(
Woodhead Publishing Limited
,
Cambridge
,
1994
).
93.
J. A.
Jones
,
T. I.
Harris
,
C. L.
Tucker
,
K. R.
Berg
,
S. Y.
Christy
,
B. A.
Day
,
D. A.
Gaztambide
,
N. J. C.
Needham
,
A. L.
Ruben
,
P. F.
Oliveira
,
R. E.
Decker
, and
R. V.
Lewis
, “
More than just fibers: An aqueous method for the production of innovative recombinant spider silk protein materials
,”
Biomacromolecules
16
(
4
),
1418
1425
(
2015
).
94.
N.
Weatherbee-Martin
,
L.
Xu
,
A.
Hupe
,
L.
Kreplak
,
D. S.
Fudge
,
X. Q.
Liu
, and
J. K.
Rainey
, “
Identification of wet-spinning and post-spin stretching methods amenable to recombinant spider aciniform silk
,”
Biomacromolecules
17
(
8
),
2737
2746
(
2016
).
95.
Q.
Peng
,
Y.
Zhang
,
L.
Lu
,
H.
Shao
,
K.
Qin
,
X.
Hu
, and
X.
Xia
, “
Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip
,”
Sci. Rep.
6
,
36473
(
2016
).
96.
T.
Fan
,
R.
Qin
,
Y.
Zhang
,
J.
Wang
,
J. S.
Fan
,
X.
Bai
,
W.
Yuan
,
W.
Huang
,
S.
Shi
,
X. C.
Su
,
D.
Yang
, and
Z.
Lin
, “
Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
38
),
e2100496118
(
2021
).
97.
C. F.
Hu
,
Z. G.
Qian
,
Q.
Peng
,
Y.
Zhang
, and
X. X.
Xia
, “
Unconventional spidroin assemblies in aqueous dope for spinning into tough synthetic fibers
,”
ACS Biomater. Sci. Eng.
7
(
8
),
3608
3617
(
2021
).
98.
N.
Kono
,
H.
Nakamura
,
M.
Mori
,
Y.
Yoshida
,
R.
Ohtoshi
,
A. D.
Malay
,
D. A.
Pedrazzoli Moran
,
M.
Tomita
,
K.
Numata
, and
K.
Arakawa
, “
Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
31
),
e2107065118
(
2021
).
99.
T.
Arndt
,
G.
Greco
,
B.
Schmuck
,
J.
Bunz
,
O.
Shilkova
,
J.
Francis
,
N. M.
Pugno
,
K.
Jaudzems
,
A.
Barth
,
J.
Johansson
, and
A.
Rising
, “
Engineered spider silk proteins for biomimetic spinning of fibers with toughness equal to dragline silks
,”
Adv. Funct. Mater.
32
,
2200986
(
2022
).
100.
F. G.
Bäcklund
,
B.
Schmuck
,
G. H. B.
Miranda
,
G.
Greco
,
N. M.
Pugno
,
J.
Ryd
, and
A.
Rising
, “
An image-analysis-based method for the prediction of recombinant protein fiber tensile strength
,”
Materials
15
(
708
),
708
(
2022
).
101.
B.
Schmuck
,
G.
Greco
,
A.
Barth
,
N. M.
Pugno
,
J.
Johansson
, and
A.
Rising
, “
High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials
,”
Mater. Today
50
,
16
(
2021
).
102.
G.
Greco
,
J.
Francis
,
T.
Arndt
,
B.
Schmuck
,
F. G.
Bäcklund
,
A.
Barth
,
J.
Johansson
,
N. M.
Pugno
, and
A.
Rising
, “
Properties of biomimetic artificial spider silk fibers tuned by postspin bath incubation
,”
Molecules
25
,
3248
(
2020
).
103.
Z.
You
,
X.
Ye
,
L.
Ye
,
Q.
Qian
,
M.
Wu
,
J.
Song
,
J.
Che
, and
B.
Zhong
, “
Extraordinary mechanical properties of composite silk through hereditable transgenic silkworm expressing recombinant major ampullate spidroin
,”
Sci. Rep.
8
(
1
),
15956
(
2018
).
104.
F.
Teulé
,
W. A.
Furin
,
A. R.
Cooper
,
J. R.
Duncan
, and
R. V.
Lewis
, “
Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers
,”
J. Mater. Sci.
42
(
21
),
8974
8985
(
2007
).
105.
X.-X.
Xia
,
Z.-G.
Qian
,
C. S.
Ki
,
Y. H.
Park
,
D. L.
Kaplan
, and
S. Y.
Lee
, “
Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber
,”
Proc. Natl. Acad. Sci.
107
(
32
),
14059
14063
(
2010
).
106.
L.
Xu
,
J. K.
Rainey
,
Q.
Meng
, and
X. Q.
Liu
, “
Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation
,”
PLoS One
7
(
11
),
e50227
(
2012
).
107.
P.
Jiang
,
N.
Marí-Buyé
,
R.
Madurga
,
M.
Arroyo-Hernández
,
C.
Solanas
,
A.
Gañán
,
R.
Daza
,
G. R.
Plaza
,
G. V.
Guinea
,
M.
Elices
,
J. L.
Cenis
, and
J.
Pérez-Rigueiro
, “
Spider silk gut: Development and characterization of a novel strong spider silk fiber
,”
Sci. Rep.
4
,
7326
(
2014
).
108.
S.
Lin
,
S.
Ryu
,
O.
Tokareva
,
G.
Gronau
,
M. M.
Jacobsen
,
W.
Huang
,
D. J.
Rizzo
,
D.
Li
,
C.
Staii
,
N. M.
Pugno
,
J. Y.
Wong
,
D. L.
Kaplan
, and
M. J.
Buehler
, “
Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres
,”
Nat. Commun.
6
,
6592
(
2015
).
109.
G.
Greco
,
H.
Mirbaha
,
B.
Schmuck
,
A.
Rising
, and
N. M.
Pugno
, “
Artificial and natural silk materials have high mechanical property variability regardless of sample size
,”
Sci. Rep.
12
(
1
),
3507
(
2022
).
110.
N.
Gonska
,
P. A.
López
,
P.
Lozano-Picazo
,
M.
Thorpe
,
G. V.
Guinea
,
J.
Johansson
,
A.
Barth
,
J.
Pérez-Rigueiro
, and
A.
Rising
, “
Structure-function relationship of artificial spider silk fibers produced by straining flow spinning
,”
Biomacromolecules
21
(
6
),
2116
2124
(
2020
).
111.
P.
Echlin
,
Handbook of Sample Preparation for Scanning Electron Microscopy and X-ray Microanalysis
(
Springer
,
New York
,
2009
).
112.
B. J.
Goodno
and
J. M.
Gere
,
Mechanics of Materials
,
9th ed.
(
Cengage Learning Emea
,
2020
).
113.
W. D.
Pilkey
,
D. F.
Pilkey
, and
Z.
Bi
,
Peterson's Stress Concentration Factors
(
John Wiley & Sons Inc
.,
2020
).
114.
B. J.
Goodno
and
J. M.
Gere
,
Mechanics of Materials
(
Cengage Learning
,
Boston
,
2018
).
115.
G. V.
Guinea
,
J.
Pérez-Rigueiro
,
G. R.
Plaza
, and
M.
Elices
, “
Volume constancy during stretching of spider silk
,”
Biomacromolecules
7
(
7
),
2173
2177
(
2006
).
116.
R.
Séguéla
, “
On the natural draw ratio of semi‐crystalline polymers: Review of the mechanical, physical and molecular aspects
,”
Macromol. Mater. Eng.
292
,
235
244
(
2007
).
117.
I. M.
Ward
,
Mechanical Properties of Solid Polymers
(
Wiley Interscience
,
New York
,
1980
).
118.
S.
Tu
,
X.
Ren
,
J.
He
, and
Z.
Zhang
, “
Stress strain curves of metallic materials and post‐necking strain hardening
,”
Fatigue Fract. Eng. Mater. Struct.
43
,
3
19
(
2019
).
119.
G. V.
Guinea
,
M.
Elices
,
G. R.
Plaza
,
G. B.
Perea
,
R.
Daza
,
C.
Riekel
,
F.
Agulló-Rueda
,
C.
Hayashi
,
Y.
Zhao
, and
J.
Pérez-Rigueiro
, “
Minor ampullate silks from Nephila and Argiope spiders: Tensile properties and microstructural characterization
,”
Biomacromolecules
13
(
7
),
2087
2098
(
2012
).
120.
N.
Kono
,
R.
Ohtoshi
,
A. D.
Malay
,
M.
Mori
,
H.
Masunaga
,
Y.
Yoshida
,
H.
Nakamura
,
K.
Numata
, and
K.
Arakawa
, “
Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression
,”
Open Biol.
11
(
12
),
210242
(
2021
).
121.
R. S. I.
Wilson
, “
The control of dragline spinning in the garden spider
,”
Quart. J. Microsc. Sci. Ser.
3
(
104
),
557
571
(
1962
).
122.
W.
Work
, “
The force-elongation behavior of web fibers and silks forcibly obtained from orb web spinning spiders
,”
Text. Res. J.
46
(
7
),
485
492
(
1976
).
123.
R. W.
Work
, “
Dimensions, birefringences, and force-elongation behavior of major and minor ampullate silk fibers from orb-web-spinning spiders—The effects of wetting on these properties
,”
Text. Res. J.
47
(
10
),
650
662
(
1977
).
124.
J. M.
Gosline
,
M. E.
DeMont
, and
M. W.
Denny
, “
The structure and properties of spider silk
,”
Endeavour
10
(
1
),
37
43
(
1986
).
125.
Z.
Shao
and
F.
Vollrath
, “
The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy
,”
Int. J. Biol. Macromol.
24
,
295
300
(
1999
).
126.
Z.
Shao
and
F.
Vollrath
, “
The effect of solvents on the contraction and mechanical properties of spider silk
,”
Polymers
40
(
7
),
1799
1806
(
1999
).
127.
B.
Madsen
,
Z. Z.
Shao
, and
F.
Vollrath
, “
Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual
,”
Int. J. Biol. Macromol.
24
(
2–3
),
301
306
(
1999
).
128.
J.
Pérez-Rigueiro
,
M.
Elices
,
J.
Llorca
, and
C.
Viney
, “
Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web
,”
J. Appl. Polym. Sci.
82
(
9
),
2245
2251
(
2001
).
129.
A.
Lazaris
,
S.
Arcidiacono
,
Y.
Huang
,
J. F.
Zhou
,
F.
Duguay
,
N.
Chretien
,
E. A.
Welsh
,
J. W.
Soares
, and
C. N.
Karatzas
, “
Spider silk fibers spun from soluble recombinant silk produced in mammalian cells
,”
Science
295
(
5554
),
472
476
(
2002
).
130.
G. V.
Guinea
,
M.
Elices
,
J.
Pérez-Rigueiro
, and
G.
Plaza
, “
Self-tightening of spider silk fibers induced by moisture
,”
Polymers
44
(
19
),
5785
5788
(
2003
).
131.
F. K.
Ko
and
J.
Jovicic
, “
Modeling of mechanical properties and structural design of spider web
,”
Biomacromolecules
5
(
3
),
780
785
(
2004
).
132.
G. V.
Guinea
, “
Stretching of supercontracted fibers: A link between spinning and the variability of spider silk
,”
J. Exp. Biol.
208
(
1
),
25
30
(
2005
).
133.
Y.
Yang
,
X.
Chen
,
Z.
Shao
,
P.
Zhou
,
D.
Porter
,
D. P.
Knight
, and
F.
Vollrath
, “
Toughness of spider silk at high and low temperatures
,”
Adv. Mater.
17
(
1
),
84
88
(
2005
).
134.
T. A.
Blackledge
and
C. Y.
Hayashi
, “
Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775)
,”
J. Exp. Biol.
209
,
2452
2461
(
2006
).
135.
B. O.
Swanson
,
T. A.
Blackledge
,
J.
Beltrán
, and
C. Y.
Hayashi
, “
Variation in the material properties of spider dragline silk across species
,”
Appl. Phys. A: Mater. Sci. Process.
82
(
2
),
213
218
(
2006
).
136.
J.
Pérez-Rigueiro
,
M.
Elices
,
G. R.
Plaza
,
J.
Rueda
, and
G. V.
Guinea
, “
Fracture surfaces and tensile properties of UV-irradiated spider silk fibers
,”
J. Polym. Sci., Part B: Polym. Phys.
45
,
786
793
(
2007
).
137.
I.
Agnarsson
,
C.
Boutry
, and
T. A.
Blackledge
, “
Spider silk aging: Initial improvement in a high performance material followed by slow degradation
,”
J. Exp. Zool., Part A: Ecol. Genet. Physiol.
309
(
8
),
494
504
(
2008
).
138.
K. N.
Savage
and
J. M.
Gosline
, “
The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties
,”
J. Exp. Biol.
211
(
12
),
1937
1947
(
2008
).
139.
C.
Ortlepp
and
J. M.
Gosline
, “
The scaling of safety factor in spider draglines
,”
J. Exp. Biol.
211
(
17
),
2832
2840
(
2008
).
140.
S. M.
Lee
,
E.
Pippel
,
U.
Gösele
,
C.
Dresbach
,
Y.
Qin
,
C. V.
Chandran
,
T.
Bräuniger
,
G.
Hause
, and
M.
Knez
, “
Greatly increased toughness of infiltrated spider silk
,”
Science
324
(
5926
),
488
492
(
2009
).
141.
A.
Sensenig
,
I.
Agnarsson
, and
T. A.
Blackledge
, “
Behavioural and biomaterial coevolution in spider orb webs
,”
J. Evol. Biol.
23
(
9
),
1839
1856
(
2010
).
142.
G. V.
Guinea
,
M.
Cerdeira
,
G. R.
Plaza
,
M.
Elices
, and
J.
Pérez-Rigueiro
, “
Recovery in viscid line fibers
,”
Biomacromolecules
11
(
5
),
1174
1179
(
2010
).
143.
A. T.
Sensenig
,
I.
Agnarsson
, and
T. A.
Blackledge
, “
Adult spiders use tougher silk: Ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider
,”
J. Zool.
285
(
1
),
28
38
(
2011
).
144.
E. M.
Pogozelski
,
W. L.
Becker
,
B. D.
See
, and
C. M.
Kieffer
, “
Mechanical testing of spider silk at cryogenic temperatures
,”
Int. J. Biol. Macromol.
48
(
1
),
27
31
(
2011
).
145.
M.
Hudspeth
,
X.
Nie
,
W.
Chen
, and
R.
Lewis
, “
Effect of loading rate on mechanical properties and fracture morphology of spider silk
,”
Biomacromolecules
13
(
8
),
2240
2246
(
2012
).
146.
S. J.
Blamires
,
C.-L.
Wu
,
T. A.
Blackledge
, and
I.-M.
Tso
, “
Post-secretion processing influences spider silk performance
,”
J. R. Soc. Interface
9
(
75
),
2479
2487
(
2012
).
147.
T. A.
Blackledge
,
J.
Pérez-Rigueiro
,
G. R.
Plaza
,
B.
Perea
,
A.
Navarro
,
G. V.
Guinea
, and
M.
Elices
, “
Sequential origin in the high performance properties of orb spider dragline silk
,”
Sci. Rep.
2
,
782
(
2012
).
148.
S. J.
Blamires
,
C. L.
Wu
, and
I. M.
Tso
, “
Variation in protein intake induces variation in spider silk expression
,”
PLoS One
7
(
2
),
e31626
(
2012
).
149.
E.
Steven
,
W. R.
Saleh
,
V.
Lebedev
,
S. F. A.
Acquah
,
V.
Laukhin
,
R. G.
Alamo
, and
J. S.
Brooks
, “
Carbon nanotubes on a spider silk scaffold
,”
Nat. Commun.
4
,
2435
(
2013
).
150.
D.
Porter
,
J.
Guan
, and
F.
Vollrath
, “
Spider silk: Super material or thin fibre?
,”
Adv. Mater.
25
(
9
),
1275
1279
(
2013
).
151.
M.
Marhabaie
,
T. C.
Leeper
, and
T. A.
Blackledge
, “
Protein composition correlates with the mechanical properties of spider (Argiope trifasciata) dragline silk
,”
Biomacromolecules
15
(
1
),
20
29
(
2014
).
152.
G.
Xu
,
L.
Gong
,
Z.
Yang
, and
X. Y.
Liu
, “
What makes spider silk fibers so strong? from molecular-crystallite network to hierarchical network structures
,”
Soft Matter
10
(
13
),
2116
2123
(
2014
).
153.
S. J.
Blamires
,
C. P.
Liao
,
C. K.
Chang
,
Y. C.
Chuang
,
C. L.
Wu
,
T. A.
Blackledge
,
H. S.
Sheu
, and
I. M.
Tso
, “
Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition
,”
Biomacromolecules
16
(
4
),
1218
1225
(
2015
).
154.
G. B.
Perea
,
C.
Solanas
,
G. R.
Plaza
,
G. V.
Guinea
,
I.
Jorge
,
J.
Vázquez
,
J. M.
Pérez Mateos
,
N.
Marí-Buyé
,
M.
Elices
, and
J.
Pérez-Rigueiro
, “
Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance
,”
Soft Matter
11
(
24
),
4868
4878
(
2015
).
155.
R.
Madurga
,
G. R.
Plaza
,
T. A.
Blackledge
,
G. V.
Guinea
,
M.
Elices
, and
J.
Pérez-Rigueiro
, “
Material properties of evolutionary diverse spider silks described by variation in a single structural parameter
,”
Sci. Rep.
6
,
18991
(
2016
).
156.
M.
Benamú
,
M.
Lacava
,
L. F.
García
,
M.
Santana
,
J.
Fang
,
X.
Wang
, and
S. J.
Blamires
, “
Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure
,”
Chemosphere
181
,
241
249
(
2017
).
157.
E.
Lepore
,
F.
Bosia
,
F.
Bonaccorso
,
M.
Bruna
,
S.
Taiolo
,
G.
Garberoglio
,
A.
Ferrari
, and
N. M.
Pugno
, “
Silk reinforced by graphene or carbon nanotubes
,”
2D Mater.
4
,
031013
(
2017
).
158.
S. R.
Koebley
,
F.
Vollrath
, and
H. C.
Schniepp
, “
Toughness-enhancing metastructure in the recluse spider's looped ribbon silk
,”
Mater. Horiz.
4
(
3
),
377
382
(
2017
).
159.
J.
Xu
,
Q.
Dong
,
Y.
Yu
,
B.
Niu
,
D.
Ji
,
M.
Li
,
Y.
Huang
,
X.
Chen
, and
A.
Tan
, “
Mass spider silk production through targeted gene replacement in Bombyx mori
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
35
),
8757
8762
(
2018
).
160.
G. G.
Kerr
,
H. F.
Nahrung
,
A.
Wiegand
,
J.
Kristoffersen
,
P.
Killen
,
C.
Brown
, and
J.
Macdonald
, “
Mechanical properties of silk of the Australian golden orb weavers Nephila pilipes and Nephila plumipes
,”
Biol. Open
7
(
2
),
bio029249
(
2018
).
161.
D.
Piorkowski
,
S. J.
Blamires
,
N. E.
Doran
,
C. P.
Liao
,
C. L.
Wu
, and
I. M.
Tso
, “
Ontogenetic shift toward stronger, tougher silk of a web-building, cave-dwelling spider
,”
J. Zool.
304
,
81
89
(
2017
).
162.
S. J.
Blamires
,
M.
Nobbs
,
P. J.
Martens
,
I. M.
Tso
,
W. T.
Chuang
,
C. K.
Chang
, and
H. S.
Sheu
, “
Multiscale mechanisms of nutritionally induced property variation in spider silks
,”
PLoS One
13
(
2
),
e0192005
(
2018
).
163.
K.
Yazawa
,
A. D.
Malay
,
H.
Masunaga
, and
K.
Numata
, “
Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber
,”
Macromol. Biosci.
19
(
3
),
1800220
(
2019
).
164.
C.
Viera
,
L. F.
Garcia
,
M.
Lacava
,
J.
Fang
,
X.
Wang
,
M. M.
Kasumovic
, and
S. J.
Blamires
, “
Silk physico-chemical variability and mechanical robustness facilitates intercontinental invasibility of a spider
,”
Sci. Rep.
9
(
1
),
13273
(
2019
).
165.
J.
Garrote
,
V.
Ruiz
,
O. P.
Troncoso
,
F. G.
Torres
,
M.
Arnedo
,
M.
Elices
,
G. V.
Guinea
, and
J.
Pérez-Rigueiro
, “
Application of the spider silk standardization initiative (S3I) methodology to the characterization of major ampullate gland silk fibers spun by spiders from Pantanos de Villa Wetlands (Lima, Peru)
,”
J. Mech. Behav. Biomed. Mater.
111
,
104023
(
2020
).
166.
R. W.
Work
and
P. D.
Emerson
, “
An apparatus and technique for the forcible silking of spiders
,”
J. Arachnol.
10
(
1
),
1
10
(
1982
).
167.
M. F.
Pantano
,
R.
Tatti
,
L.
Aversa
,
R.
Verucchi
, and
N. M.
Pugno
, “
Doubling the mechanical properties of spider silk by c60 supersonic molecular beam epitaxy
,”
Front. Mater.
7
,
197
(
2020
).
168.
H.-C.
Wu
,
A.
Pandey
,
L.-Y.
Chang
,
C.-Y.
Hsu
,
T. C.-K.
Yang
,
I.-M.
Tso
,
H.-S.
Sheu
, and
J.-C.
Yang
, “
Hydrothermal effect on mechanical properties of Nephila pilipes
,”
Polymers
12
(
1013
),
1013
(
2020
).
169.
S. P.
Kelly
,
K. P.
Huang
,
C. P.
Liao
,
R. A. N.
Khasanah
,
F. S. S.
Chien
,
J. S.
Hu
,
C. L.
Wu
, and
I. M.
Tso
, “
Mechanical and structural properties of major ampullate silk from spiders fed carbon nanomaterials
,”
PLoS One
15
,
e0241829
(
2020
).
170.
G.
Greco
and
N. M.
Pugno
, “
Mechanical properties and Weibull scaling laws of unknown spider silks
,”
Molecules
25
,
2938
(
2020
).
171.
G.
Greco
,
J.
Wolff
, and
N. M.
Pugno
, “
Strong and tough silk for resilient attachment discs: The mechanical properties of piriform silk, in the spider Cupiennius salei (Keyserling, 1877)
,”
Front. Mater.
7
,
138
(
2020
).
172.
L.
Hu
,
Q.
Chen
,
J.
Yao
,
Z.
Shao
, and
X.
Chen
, “
Structural changes in spider dragline silk after repeated supercontraction—stretching processes
,”
Biomacromolecules
12
,
5306
(
2020
).
173.
T. W.
Dugger
,
S.
Sarkar
,
S. M.
Correa-Garhwal
,
M.
Zhernenkov
,
Y.
Zhang
,
G.
Kolhatkar
,
R.
Mohan
,
L.
Cruz
,
A. D.
Lubio
,
A.
Ruediger
,
C. Y.
Hayashi
,
K. E.
Uhrich
, and
D. J.
Kisailus
, “
Ultrastructures and mechanics of annealed Nephila clavipes major ampullate silk
,”
Biomacromolecules
21
(
3
),
1186
1194
(
2020
).
174.
M.
Saric
,
L.
Eisoldt
,
V.
Döring
, and
T.
Scheibel
, “
Interplay of different major ampullate spidroins during assembly and implications for fiber mechanics
,”
Adv. Mater.
33
(
9
),
2006499
(
2021
).
175.
D.
Piorkowski
,
C. P.
Liao
,
T. A.
Blackledge
, and
I. M.
Tso
, “
Size-related increase in inducible mechanical variability of major ampullate silk in a huntsman spider (Araneae: Sparassidae)
,”
Sci. Nat.
108
(
3
),
22
(
2021
).
176.
K.
Yazawa
,
K.
Hidaka
, and
J.
Negishi
, “
Cell adhesion behaviors on spider silk fibers, films, and nano fibers
,”
Langmuir
38
,
7766
(
2022
).
177.
A. E.
Brooks
,
S. M.
Stricker
,
S. B.
Joshi
,
T. J.
Kamerzell
,
C. R.
Middaugh
, and
R. V.
Lewis
, “
Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2
,”
Biomacromolecules
9
(
6
),
1506
1510
(
2008
).
178.
Z.
Lin
,
Q.
Deng
,
X. Y.
Liu
, and
D.
Yang
, “
Engineered large spider eggcase silk protein for strong artificial fibers
,”
Adv. Mater.
25
(
8
),
1216
1220
(
2012
).
179.
A. E.
Albertson
,
F.
Teulé
,
W.
Weber
,
J. L.
Yarger
, and
R. V.
Lewis
, “
Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers
,”
J. Mech. Behav. Biomed. Mater.
29
,
225
234
(
2014
).
180.
C. G.
Copeland
,
B. E.
Bell
,
C. D.
Christensen
, and
R. V.
Lewis
, “
Development of a process for the spinning of synthetic spider silk
,”
ACS Biomater. Sci. Eng.
1
(
7
),
577
584
(
2015
).
181.
M.
Andersson
,
Q.
Jia
,
A.
Abella
,
X. Y.
Lee
,
M.
Landreh
,
P.
Purhonen
,
H.
Hebert
,
M.
Tenje
,
C. V.
Robinson
,
Q.
Meng
,
G. R.
Plaza
,
J.
Johansson
, and
A.
Rising
, “
Biomimetic spinning of artificial spider silk from a chimeric minispidroin
,”
Nat. Chem. Biol.
13
(
3
),
262
264
(
2017
).
182.
R.
Madurga
,
A. M.
Gañán-Calvo
,
G. R.
Plaza
,
G. V.
Guinea
,
M.
Elices
, and
J.
Pérez-Rigueiro
, “
Production of high performance bioinspired silk fibers by straining flow spinning
,”
Biomacromolecules
18
(
4
),
1127
1133
(
2017
).
183.
C.
Thamm
and
T.
Scheibel
, “
Recombinant production, characterization, and fiber spinning of an engineered short major ampullate spidroin (MaSp1s)
,”
Biomacromolecules
18
(
4
),
1365
1372
(
2017
).
184.
R.
Madurga
,
A. M.
Gañán-Calvo
,
G. R.
Plaza
,
J. M.
Atienza
,
G. V.
Guinea
,
M.
Elices
,
P. A.
López
,
R.
Daza
,
D.
González-Nieto
, and
J.
Pérez-Rigueiro
, “
Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning
,”
Polymers
150
,
311
317
(
2018
).
185.
L.
Xu
,
N.
Weatherbee-Martin
,
X. Q.
Liu
, and
J. K.
Rainey
, “
Recombinant silk fiber properties correlate to prefibrillar self-assembly
,”
Small
15
(
12
),
1805294
(
2019
).
186.
Y.
Yuan
,
Q.
Yu
,
J.
Wen
,
C.
Li
,
Z.
Guo
,
X.
Wang
, and
N.
Wang
, “
Ultrafast and highly selective uranium extraction from seawater by hydrogel‐like spidroin‐based protein fiber
,”
Angew. Chem.
131
(
34
),
11911
11916
(
2019
).
187.
R.
Wen
,
K.
Wang
, and
Q.
Meng
, “
Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials
,”
Acta Biomater.
115
,
210
219
(
2020
).
188.
C.
Zhang
,
J.
Mi
,
H.
Qi
,
J.
Huang
,
S.
Liu
,
L.
Zhang
, and
D.
Fan
, “
Engineered a novel pH-sensitive short major ampullate spidroin
,”
Int. J. Biol. Macromol
154
,
698
705
(
2020
).
189.
L. Y.
Tian
,
Q.
Meng
, and
Y.
Lin
, “
Expression and characterization of chimeric spidroins from flagelliform-aciniform repetitive modules
,”
Biopolymers
111
(
12
),
e23404
(
2020
).
190.
H.
Zhu
,
A.
Rising
,
J.
Johansson
,
X.
Zhang
,
Y.
Lin
,
L.
Zhang
,
T.
Yi
,
J.
Mi
, and
Q.
Meng
, “
Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains
,”
Int. J. Biol. Macromol.
154
,
765
772
(
2020
).
191.
X.
Li
,
X.
Qi
,
Y. M.
Cai
,
Y.
Sun
,
R.
Wen
,
R.
Zhang
,
J.
Johansson
,
Q.
Meng
, and
G.
Chen
, “
Customized flagelliform spidroins form spider silk-like fibers at pH 8.0 with outstanding tensile strength
,”
ACS Biomater. Sci. Eng.
8
(
1
),
119
127
(
2022
).
192.
T.
Asakura
,
H.
Matsuda
,
A.
Aoki
, and
A.
Naito
, “
Acetylation and hydration treatment of recombinant spider silk fiber, and their characterization using 13C NMR spectroscopy
,”
Polymers
243
,
124605
(
2022
).
193.
Q.
Jin
,
F.
Pan
,
C. F.
Hu
,
S. Y.
Lee
,
X. X.
Xia
, and
Z. G.
Qian
, “
Secretory Production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers
,”
Metab. Eng.
70
,
102
114
(
2022
).
194.
W.
He
,
D.
Qian
,
Y.
Wang
,
G.
Zhang
,
Y.
Cheng
,
X.
Hu
,
K.
Wen
,
M.
Wang
,
Z.
Liu
,
X.
Zhou
, and
M.
Zhu
, “
Protein-like nanogel for spinning hierarchically structured artificial spider silk
,”
Adv. Mater.
34
,
2201843
(
2022
).
195.
T.
Asakura
,
H.
Matsuda
,
A.
Naito
, and
Y.
Abe
, “
Formylation of recombinant spider silk in formic acid and wet spinning studied using nuclear magnetic resonance and infrared spectroscopies
,”
ACS Biomater. Sci. Eng.
8
,
2390
(
2022
).
196.
J.
Cheng
,
C.
Hu
,
C.
Gan
,
X.
Xia
, and
Z.
Qian
, “
Functionalization and reinforcement of recombinant spider dragline silk fibers by confined nanoparticle formation
,”
ACS Biomater. Sci. Eng.
8
,
3299
(
2022
).

Supplementary Material

You do not currently have access to this content.