In the field of cardiac electrophysiology, modeling has played a central role for many decades. However, even though the effort is well-established, it has recently seen a rapid and sustained evolution in the complexity and predictive power of the models being created. In particular, new approaches to modeling have allowed the tracking of parallel and interconnected processes that span from the nanometers and femtoseconds that determine ion channel gating to the centimeters and minutes needed to describe an arrhythmia. The connection between scales has brought unprecedented insight into cardiac arrhythmia mechanisms and drug therapies. This review focuses on the generation of these models from first principles, generation of detailed models to describe ion channel kinetics, algorithms to create and numerically solve kinetic models, and new approaches toward data gathering that parameterize these models. While we focus on application of these models for cardiac arrhythmia, these concepts are widely applicable to model the physiology and pathophysiology of any excitable cell.

1.
A. L.
β€ˆ
Hodgkin
and
A. F.
β€ˆ
Huxley
, β€œ
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
β€ˆ
117
(
4
),
500
–
544
(
1952
).
2.
Y.
β€ˆ
Rudy
and
J. R.
β€ˆ
Silva
, β€œ
Computational biology in the study of cardiac ion channels and cell electrophysiology
,”
Q. Rev. Biophys.
β€ˆ
39
(
1
),
57
–
116
(
2006
).
3.
Y.
β€ˆ
Ruan
,
N.
β€ˆ
Liu
, and
S. G.
β€ˆ
Priori
, β€œ
Sodium channel mutations and arrhythmias
,”
Nat. Rev. Cardiol.
β€ˆ
6
,
337
–
348
(
2009
).
4.
C. H.
β€ˆ
Luo
and
Y.
β€ˆ
Rudy
, β€œ
A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes
,”
Circ. Res.
β€ˆ
74
(
6
),
1071
–
1096
(
1994
).
5.
D. L.
β€ˆ
Campbell
β€ˆet al., β€œ
Reversal potential of the calcium current in bull-frog atrial myocytes
,”
J. Physiol.
β€ˆ
403
,
267
–
286
(
1988
).
6.
J.
β€ˆ
Tomek
β€ˆet al., β€œ
Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block
,”
Elife
β€ˆ
8
,
e48890
(
2019
).
7.
J. D.
β€ˆ
Moreno
and
C.
β€ˆ
Clancy
, β€œ
Simulation of cardiac action potentials
,” in
Heart Rate and Rhythm
, edited by
S.
β€ˆ
Tripathi
(
Springer-Verlag
,
Berlin, Heidelberg
,
2011
).
8.
M. E.
β€ˆ
Marsh
,
S. T.
β€ˆ
Ziaratgahi
, and
R. J.
β€ˆ
Spiteri
, β€œ
The secrets to the success of the Rush–Larsen method and its generalizations
,”
IEEE Trans. Biomed. Eng.
β€ˆ
59
(
9
),
2506
–
2515
(
2012
).
9.
S.
β€ˆ
Rush
and
H.
β€ˆ
Larsen
, β€œ
A practical algorithm for solving dynamic membrane equations
,”
IEEE Trans. Biomed. Eng.
β€ˆ
25
(
4
),
389
–
392
(
1978
).
10.
C. E.
β€ˆ
Clancy
and
Y.
β€ˆ
Rudy
, β€œ
Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia
,”
Nature
β€ˆ
400
(
6744
),
566
–
569
(
1999
).
11.
W. H.
β€ˆ
Press
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
Cambridge, New York
,
2007
), Vol.
xxi
, p.
1235
.
12.
A.
β€ˆ
Hindmarsh
β€ˆet al., β€œ
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
,”
ACM Trans. Math. Software
β€ˆ
31
(
3
),
363
–
396
(
2005
).
13.
D.
β€ˆ
Gardner
β€ˆet al., β€œ
Enabling new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers
,”
ACM Trans. Math. Software
β€ˆ
48
(
3
),
1
–
24
(
2022
).
14.
C. B.
β€ˆ
Moler
,
Numerical Computing with MATLAB
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2004
), Vol.
XI
, p.
336
.
15.
M.
β€ˆ
Hendrix
,
M.
β€ˆ
Clerx
, and
T.
β€ˆ
AU
, β€œ
cellmlmanip and chaste_codegen: Automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians
,”
Wellcome Open Res.
β€ˆ
6
,
261
(
2022
).
16.
D.
β€ˆ
Colquhoun
and
A. G.
β€ˆ
Hawkes
, β€œ
A Q-Matrix cookbook
,” in
Single-Channel Recording
, edited by
B.
β€ˆ
Sakmann
and
E.
β€ˆ
Neher
(
Springer
,
Boston
,
1995
), pp.
589
–
633
.
17.
Z. R.
β€ˆ
Teed
and
J. R.
β€ˆ
Silva
, β€œ
A computationally efficient algorithm for fitting ion channel parameters.
,”
MethodsX
β€ˆ
3
,
577
–
588
(
2016
).
18.
T.
β€ˆ
Stary
and
V. N.
β€ˆ
Biktashev
, β€œ
Exponential integrators for a Markov chain model of the fast sodium channel of cardiomyocytes
,”
IEEE Trans. Biomed. Eng.
β€ˆ
62
(
4
),
1070
–
1076
(
2015
).
19.
Q.
β€ˆ
Wang
β€ˆet al., β€œ
SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome
,”
Cell
β€ˆ
80
,
805
–
811
(
1995
).
20.
J. D.
β€ˆ
Moreno
β€ˆet al., β€œ
A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms
,”
Sci. Transl. Med.
β€ˆ
3
(
98
),
98ra83
(
2011
).
21.
J. R.
β€ˆ
Silva
, β€œ
How to connect cardiac excitation to the atomic interactions of ion channels
,”
Biophys. J.
β€ˆ
114
(
2
),
259
–
266
(
2018
).
22.
J. D.
β€ˆ
Moreno
β€ˆet al., β€œ
A molecularly detailed NaV1.5 model reveals a new class I antiarrhythmic drug target
,”
J. Am. Coll. Cardiol.: Basic Transl. Sci.
β€ˆ
4
,
736
(
2019
).
23.
K. E.
β€ˆ
Mangold
β€ˆet al., β€œ
Mechanisms and models of cardiac sodium channel inactivation
,”
Channels
β€ˆ
11
(
6
),
517
–
533
(
2017
).
24.
J. D.
β€ˆ
Moreno
,
T. J.
β€ˆ
Lewis
, and
C. E.
β€ˆ
Clancy
, β€œ
Parameterization for in-silico modeling of ion channel interactions with drugs
,”
PLoS One
β€ˆ
11
(
3
),
e0150761
(
2016
).
25.
M.
β€ˆ
Clerx
β€ˆet al., β€œ
Four ways to fit an ion channel model
,”
Biophys. J.
β€ˆ
117
(
12
),
2420
–
2437
(
2019
).
26.
J.
β€ˆ
Silva
and
Y.
β€ˆ
Rudy
, β€œ
Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve
,”
Circulation
β€ˆ
112
(
10
),
1384
–
1391
(
2005
).
27.
W. N.
β€ˆ
Zagotta
,
T.
β€ˆ
Hoshi
, and
R. W.
β€ˆ
Aldrich
, β€œ
Shaker potassium channel gating. III. Evaluation of kinetic models for activation
,”
J. Gen. Physiol.
β€ˆ
103
(
2
),
321
–
362
(
1994
).
28.
W. N.
β€ˆ
Zagotta
β€ˆet al., β€œ
Shaker potassium channel gating. II. Transitions in the activation pathway
,”
J. Gen. Physiol.
β€ˆ
103
(
2
),
279
–
319
(
1994
).
29.
T.
β€ˆ
Hoshi
,
W. N.
β€ˆ
Zagotta
, and
R. W.
β€ˆ
Aldrich
, β€œ
Shaker potassium channel gating. I. Transitions near the open state
,”
J. Gen. Physiol.
β€ˆ
103
(
2
),
249
–
278
(
1994
).
30.
M. W.
β€ˆ
Rudokas
β€ˆet al., β€œ
The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry
,”
J. Vis. Exp.
β€ˆ
11
(
85
),
51040
(
2014
).
31.
J. D.
β€ˆ
Osteen
β€ˆet al., β€œ
Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
109
(
18
),
7103
–
7108
(
2012
).
32.
J. D.
β€ˆ
Osteen
β€ˆet al., β€œ
KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
107
(
52
),
22710
–
22715
(
2010
).
33.
J.
β€ˆ
Eldstrom
β€ˆet al., β€œ
ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state
,”
J. Gen. Physiol.
β€ˆ
153
(
12
),
e202112969
(
2021
).
34.
E.
β€ˆ
Thompson
,
J.
β€ˆ
Eldstrom
, and
D.
β€ˆ
Fedida
, β€œ
Single channel kinetic analysis of the cAMP effect on I(Ks) mutants, S209F and S27D/S92D.
,”
Channels
β€ˆ
12
(
1
),
276
–
283
(
2018
).
35.
D.
β€ˆ
Werry
β€ˆet al., β€œ
Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks)
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
110
(
11
),
E996
–
1005
(
2013
).
36.
M.
β€ˆ
Westhoff
β€ˆet al., β€œ
I(Ks) ion-channel pore conductance can result from individual voltage sensor movements
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
116
(
16
),
7879
–
7888
(
2019
).
37.
D.
β€ˆ
Fedida
, β€œ
Modeling the hidden pathways of IKs channel activation
,”
Biophys. J.
β€ˆ
115
(
1
),
1
–
2
(
2018
).
38.
S.
β€ˆ
Ramasubramanian
and
Y.
β€ˆ
Rudy
, β€œ
The structural basis of IKs ion-channel activation: Mechanistic insights from molecular simulations
,”
Biophys. J.
β€ˆ
114
(
11
),
2584
–
2594
(
2018
).
39.
J. R.
β€ˆ
Silva
β€ˆet al., β€œ
A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
106
(
27
),
11102
–
11106
(
2009
).
40.
M. O.
β€ˆ
Jensen
β€ˆet al., β€œ
Mechanism of voltage gating in potassium channels
,”
Science
β€ˆ
336
(
6078
),
229
–
233
(
2012
).
41.
G. R.
β€ˆ
Bowman
, β€œ
Improved coarse-graining of Markov state models via explicit consideration of statistical uncertainty.
,”
J. Chem. Phys.
β€ˆ
137
(
13
),
134111
(
2012
).
42.
G. R.
β€ˆ
Bowman
, β€œ
An overview and practical guide to building Markov state models
,”
Adv. Exp. Med. Biol.
β€ˆ
797
,
7
–
22
(
2014
).
43.
G. R.
β€ˆ
Bowman
β€ˆet al., β€œ
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
112
(
9
),
2734
–
2739
(
2015
).
44.
V. S.
β€ˆ
Pande
,
K.
β€ˆ
Beauchamp
, and
G. R.
β€ˆ
Bowman
, β€œ
Everything you wanted to know about Markov state models but were afraid to ask
,”
Methods
β€ˆ
52
(
1
),
99
–
105
(
2010
).
45.
K. E.
β€ˆ
Mangold
β€ˆet al., β€œ
Creating ion channel kinetic models using cloud computing
,”
Curr. Protoc.
β€ˆ
2
(
2
),
e374
(
2022
).
46.
M.
β€ˆ
Varadi
β€ˆet al., β€œ
AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models
,”
Nucl. Acids Res.
β€ˆ
50
(
D1
),
D439
–
D444
(
2022
).
47.
J.
β€ˆ
Jumper
β€ˆet al., β€œ
Highly accurate protein structure prediction with AlphaFold
,”
Nature
β€ˆ
596
(
7873
),
583
–
589
(
2021
).
48.
P. T.
β€ˆ
Nguyen
β€ˆet al., β€œ
Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
116
(
8
),
2945
–
2954
(
2019
).
49.
P. C.
β€ˆ
Yang
β€ˆet al., β€œ
A computational pipeline to predict cardiotoxicity: From the atom to the rhythm
,”
Circ. Res.
β€ˆ
126
,
947
(
2020
).
50.
V.
β€ˆ
Menon
,
N.
β€ˆ
Spruston
, and
W. L.
β€ˆ
Kath
, β€œ
A state-mutating genetic algorithm to design ion-channel models
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
106
(
39
),
16829
–
16834
(
2009
).
51.
K. E.
β€ˆ
Mangold
β€ˆet al., β€œ
Identification of structures for ion channel kinetic models
,”
PLoS Comput. Biol.
β€ˆ
17
(
8
),
e1008932
(
2021
).
52.
W.
β€ˆ
Zhu
,
Z.
β€ˆ
Varga
, and
J. R.
β€ˆ
Silva
, β€œ
Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry
,”
Prog. Biophys. Mol. Biol.
β€ˆ
120
(
1–3)
,
3
–
17
(
2016
).
53.
Z.
β€ˆ
Varga
β€ˆet al., β€œ
Direct measurement of cardiac Na+ channel conformations reveals molecular pathologies of inherited mutations
,”
Circ.: Arrhythmia Electrophysiol.
β€ˆ
8
(
5
),
1228
–
1239
(
2015
).
54.
Y.
β€ˆ
Ruan
β€ˆet al., β€œ
Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients
,”
Circulation
β€ˆ
116
(
10
),
1137
–
1144
(
2007
).
55.
M. C.
β€ˆ
Sanguinetti
and
N. K.
β€ˆ
Jurkiewicz
, β€œ
Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents
,”
J. Gen. Physiol.
β€ˆ
96
(
1
),
195
–
215
(
1990
).
56.
A.
β€ˆ
Zou
β€ˆet al., β€œ
Single HERG delayed rectifier K+ channels expressed in Xenopus oocytes
,”
Am. J. Physiol.
β€ˆ
272
(
3 Pt 2
),
H1309
(
1997
).
57.
K. A.
β€ˆ
Beattie
β€ˆet al., β€œ
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics
,”
J. Physiol.
β€ˆ
596
(
10
),
1813
–
1828
(
2018
).
58.
Y.
β€ˆ
Chen-Izu
β€ˆet al., β€œ
From action potential-clamp to 'onion-peeling' technique-recording of ionic currents under physiological conditions
,” in
Patch Clamp Technique
(
Intech Open
,
2012
), pp.
143
–
162
.
59.
B.
β€ˆ
Horvath
β€ˆet al., β€œ
Ion current profiles in canine ventricular myocytes obtained by the β€˜onion peeling’ technique
,”
J. Mol. Cell. Cardiol.
β€ˆ
158
,
153
–
162
(
2021
).
60.
A. P.
β€ˆ
Clark
β€ˆet al., β€œ
An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic pro-arrhythmia mechanisms
,”
Br. J. Pharmacol.
β€ˆ
179
,
4829
(
2022
).
61.
O. J.
β€ˆ
Britton
β€ˆet al., β€œ
Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology
,”
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
110
(
23
),
E2098
(
2013
).
62.
J. Q. X.
β€ˆ
Gong
and
E. A.
β€ˆ
Sobie
, β€œ
Population-based mechanistic modeling allows for quantitative predictions of drug responses across cell types
,”
npj Syst. Biol. Appl.
β€ˆ
4
,
11
(
2018
).
63.
H.
β€ˆ
Ni
β€ˆet al., β€œ
Populations of in silico myocytes and tissues reveal synergy of multiatrial-predominant K(+)-current block in atrial fibrillation
,”
Br. J. Pharmacol.
β€ˆ
177
(
19
),
4497
–
4515
(
2020
).
64.
D.
β€ˆ
Ponce-Balbuena
β€ˆet al., β€œ
Cardiac Kir2.1 and NaV1.5 channels traffic together to the sarcolemma to control excitability
,”
Circ. Res.
β€ˆ
122
(
11
),
1501
–
1516
(
2018
).
65.
J. D.
β€ˆ
Moreno
β€ˆet al., β€œ
Pulsus alternans in cardiogenic shock recapitulated in single cell fluorescence imaging of a patient's cardiomyocyte.
,”
Circ. Heart Failure
β€ˆ
15
(
2
),
e008855
(
2022
).
66.
P.
β€ˆ
Aghasafari
β€ˆet al., β€œ
A deep learning algorithm to translate and classify cardiac electrophysiology
,”
Elife
β€ˆ
10
,
e68335
(
2021
).
67.
S.
β€ˆ
Morotti
β€ˆet al., β€œ
Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications
,”
Sci. Adv.
β€ˆ
7
(
47
),
eabg0927
(
2021
).
68.
C. L.
β€ˆ
Lei
and
G. R.
β€ˆ
Mirams
, β€œ
Neural network differential equations for ion channel modelling
,”
Front. Physiol.
β€ˆ
12
,
708944
(
2021
).
69.
A.
β€ˆ
Khrennikov
and
E.
β€ˆ
Yurova
, β€œ
Automaton model of protein: Dynamics of conformational and functional states
,”
Prog. Biophys. Mol. Biol.
β€ˆ
130
,
2
–
14
(
2017
).
70.
V.
β€ˆ
Nguyen
,
R.
β€ˆ
Mathias
, and
G. D.
β€ˆ
Smith
, β€œ
A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels
,”
Bull. Math. Biol.
β€ˆ
67
(
3
),
393
–
432
(
2005
).
71.
L.
β€ˆ
Pezard
and
A.
β€ˆ
Lesne
, β€œ
Cellular automata approach of transmembrane ionic currents
,”
J. Integr. Neurosci.
β€ˆ
7
(
2
),
271
–
286
(
2008
).
You do not currently have access to this content.