Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.

1.
J. G.
Jacot
,
J. C.
Martin
, and
D. L.
Hunt
, “
Mechanobiology of cardiomyocyte development
,”
J. Biomech.
43
,
93
98
(
2010
).
2.
S. P.
Sheehy
,
A.
Grosberg
, and
K. K.
Parker
, “
The contribution of cellular mechanotransduction to cardiomyocyte form and function
,”
Biomech. Model. Mechanobiol.
11
,
1227
1239
(
2012
).
3.
S.
Majkut
 et al., “
Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating
,”
Curr. Biol.
23
,
2434
2439
(
2013
).
4.
J.
Münch
and
S.
Abdelilah-Seyfried
, “
Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart
,”
Front. Cell Dev. Biol.
9
,
642840
(
2021
).
5.
C. L.
Happe
and
A. J.
Engler
, “
Mechanical forces reshape differentiation cues that guide cardiomyogenesis
,”
Circ. Res.
118
,
296
310
(
2016
).
6.
S. W.
Patterson
,
H.
Piper
, and
E. H.
Starling
, “
The regulation of the heart beat
,”
J. Physiol.
48
,
465
513
(
1914
).
7.
G.
von Anrep
, “
On the part played by the suprarenals in the normal vascular reactions of the body
,”
J. Physiol.
45
,
307
317
(
1912
).
8.
A. P.
Voorhees
and
H.-C.
Han
, “
Biomechanics of cardiac function
,”
Compr. Physiol.
5
,
1623
1644
(
2015
).
9.
V.
Schwach
and
R.
Passier
, “
Native cardiac environment and its impact on engineering cardiac tissue
,”
Biomater. Sci.
7
,
3566
3580
(
2019
).
10.
C.
Hall
,
K.
Gehmlich
,
C.
Denning
, and
D.
Pavlovic
, “
Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease
,”
J. Am. Heart Assoc.
10
,
e019338
(
2021
).
11.
Z.
Li
 et al., “
Thermosensitive and highly flexible hydrogels capable of stimulating cardiac differentiation of cardiosphere-derived cells under static and dynamic mechanical training conditions
,”
ACS Appl. Mater. Interfaces
8
,
15948
15957
(
2016
).
12.
I.
Shimizu
and
T.
Minamino
, “
Physiological and pathological cardiac hypertrophy
,”
J. Mol. Cell. Cardiol.
97
,
245
262
(
2016
).
13.
R. C.
Lyon
,
F.
Zanella
,
J. H.
Omens
, and
F.
Sheikh
, “
Mechanotransduction in cardiac hypertrophy and failure
,”
Circ. Res.
116
,
1462
1476
(
2015
).
14.
Z. K.
Haque
and
D.-Z.
Wang
, “
How cardiomyocytes sense pathophysiological stresses for cardiac remodeling
,”
Cell. Mol. Life Sci.
74
,
983
1000
(
2017
).
15.
K.
Kuwahara
,
T.
Nishikimi
, and
K.
Nakao
, “
Transcriptional regulation of the fetal cardiac gene program
,”
J. Pharmacol. Sci.
119
,
198
203
(
2012
).
16.
I.
Shiojima
 et al., “
Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure
,”
J. Clin. Invest.
115
,
2108
2118
(
2005
).
17.
M.
Nakamura
and
J.
Sadoshima
, “
Mechanisms of physiological and pathological cardiac hypertrophy
,”
Nat. Rev. Cardiol.
15
,
387
407
(
2018
).
18.
O. J.
Abilez
 et al., “
Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling
,”
Stem Cells
36
,
265
277
(
2018
).
19.
P. A.
Galie
,
N.
Khalid
,
K. E.
Carnahan
,
M. V.
Westfall
, and
J. P.
Stegemann
, “
Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes
,”
Cardiovasc. Pathol.
22
,
219
227
(
2013
).
20.
M. R.
Salick
 et al., “
Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes
,”
Biomaterials
35
,
4454
4464
(
2014
).
21.
J.
Guo
 et al., “
Interplay of genotype and substrate stiffness in driving the hypertrophic cardiomyopathy phenotype in iPSC-micro-heart muscle arrays
,”
Cell. Mol. Bioeng.
14
,
409
425
(
2021
).
22.
I.
Jorba
 et al., “
In vitro methods to model cardiac mechanobiology in health and disease
,”
Tissue Eng. Part C
27
,
139
151
(
2021
).
23.
J.
Zhuang
,
K. A.
Yamada
,
J. E.
Saffitz
, and
A. G.
Kleber
, “
Pulsatile stretch remodels cell-to-cell communication in cultured myocytes
,”
Circ. Res.
87
,
316
(
2000
).
24.
B.
Russell
,
M. W.
Curtis
,
Y. E.
Koshman
, and
A. M.
Samarel
, “
Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width
,”
J. Mol. Cell. Cardiol.
48
,
817
823
(
2010
).
25.
B.
Özkale
,
M. S.
Sakar
, and
D. J.
Mooney
, “
Active biomaterials for mechanobiology
,”
Biomaterials
267
,
120497
(
2021
).
26.
H.
Shi
,
C.
Wang
, and
Z.
Ma
, “
Stimuli-responsive biomaterials for cardiac tissue engineering and dynamic mechanobiology
,”
APL Bioeng.
5
,
011506
(
2021
).
27.
A. O.
Melleby
 et al., “
A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice
,”
Cardiovasc. Res.
114
,
1680
1690
(
2018
).
28.
M.
Turcani
and
H.
Rupp
, “
Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition
,”
Br. J. Pharmacol.
130
,
1671
1677
(
2000
).
29.
M. E.
Young
,
F. A.
Laws
,
G. W.
Goodwin
, and
H.
Taegtmeyer
, “
Reactivation of peroxisome proliferator-activated receptor α is associated with contractile dysfunction in hypertrophied rat heart
,”
J. Biol. Chem.
276
,
44390
44395
(
2001
).
30.
B.
Swynghedauw
, “
Molecular mechanisms of myocardial remodeling
,”
Physiol. Rev.
79
,
215
262
(
1999
).
31.
K. T.
Weber
and
C. G.
Brilla
, “
Pathological hypertrophy and cardiac interstitium: Fibrosis renin-angiotensin-aldosterone system
,”
Circulation
83
,
1849
1865
(
1991
).
32.
E.
Balcells
,
Q. C.
Meng
,
W. H.
Johnson
,
S.
Oparil
, and
L. J.
Dell'Italia
, “
Angiotensin II formation from ACE and chymase in human and animal hearts: Methods and species considerations
,”
Am. J. Physiol.-Heart Circ. Physiol.
273
,
H1769
H1774
(
1997
).
33.
H.
Sekine
,
T.
Shimizu
,
S.
Kosaka
,
E.
Kobayashi
, and
T.
Okano
, “
Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells
,”
J. Heart Lung Transplant.
25
,
324
332
(
2006
).
34.
T.
Kofidis
,
L.
Balsam
,
J.
de Bruin
, and
R. C.
Robbins
, “
Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment
,”
Med. Eng. Phys.
26
,
157
163
(
2004
).
35.
H.
Watkins
,
H.
Ashrafian
, and
C. S.
Redwood
, “
Inherited cardiomyopathies
,”
New England J. Med.
364
,
1643
1656
(
2011
).
36.
E.
Gandjbakhch
 et al., “
Screening of genes encoding junctional candidates in arrhythmogenic right ventricular cardiomyopathy/dysplasia
,”
Europace
15
,
1522
1525
(
2013
).
37.
B.
Klauke
 et al., “
De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy
,”
Hum. Mol. Genet.
19
,
4595
4607
(
2010
).
38.
C.
Basso
,
D.
Corrado
,
F. I.
Marcus
,
A.
Nava
, and
G.
Thiene
, “
Arrhythmogenic right ventricular cardiomyopathy
,”
Lancet
373
,
1289
1300
(
2009
).
39.
Z.
Zhang
 et al., “
Normalization of Naxos plakoglobin levels restores cardiac function in mice
,”
J. Clin. Invest.
125
,
1708
1712
(
2015
).
40.
N. A.
Chitaev
 et al., “
The binding of plakoglobin to desmosomal cadherins: Patterns of binding sites and topogenic potential
,”
J. Cell Biol.
133
,
359
369
(
1996
).
41.
E. K.
Biernacka
 et al., “
Pathogenic variants in plakophilin-2 gene (PKP2) are associated with better survival in arrhythmogenic right ventricular cardiomyopathy
,”
J. Appl. Genet.
62
,
613
620
(
2021
).
42.
T. B.
Rasmussen
 et al., “
Truncating plakophilin-2 mutations in arrhythmogenic cardiomyopathy are associated with protein haploinsufficiency in both myocardium and epidermis
,”
Circ. Cardiovasc. Genet.
7
,
230
240
(
2014
).
43.
B.
Gerull
and
A.
Brodehl
, “
Genetic animal models for arrhythmogenic cardiomyopathy
,”
Front. Physiol.
11
,
624
624
(
2020
).
44.
R. D.
Patten
and
M. R.
Hall-Porter
, “
Small animal models of heart failure
,”
Circ.: Heart Failure
2
,
138
144
(
2009
).
45.
D.
Barefield
,
M.
Kumar
,
P. P.
de Tombe
, and
S.
Sadayappan
, “
Contractile dysfunction in a mouse model expressing a heterozygous MYBPC3 mutation associated with hypertrophic cardiomyopathy
,”
Am. J. Physiol. Heart Circ. Physiol.
306
,
H807
H815
(
2014
).
46.
P. Y.
Sato
 et al., “
Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc
,”
Circ. Res.
109
,
193
201
(
2011
).
47.
M.
Noorman
 et al., “
Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy
,”
Heart Rhythm
10
,
412
419
(
2013
).
48.
M.
Cerrone
 et al., “
Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm
,”
Nat. Commun.
8
,
106
(
2017
).
49.
W. C.
Claycomb
,
J. B.
Delcarpio
,
S. E.
Guice
, and
R. L.
Moses
, “
Culture and characterization of fetal human atrial and ventricular cardiac muscle cells
,” In
Vitro Cell. Dev. Biol.
25
,
1114
1120
(
1989
).
50.
E.
Ergir
 et al., “
Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture
,”
Sci. Rep.
12
,
17409
(
2022
).
51.
T.
Shimizu
 et al., “
Fabrication of pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces
,”
Circ. Res.
90
,
e40
(
2002
).
52.
T.
Shimizu
 et al., “
Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets
,”
Tissue Eng.
12
,
499
(
2006
).
53.
H.
Yang
 et al., “
Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs 3D engineered heart tissue
,”
Cardiovasc. Res.
117
,
2125
2136
(
2021
).
54.
M.
Chiquet
,
L.
Gelman
,
R.
Lutz
, and
S.
Maier
, “
From mechanotransduction to extracellular matrix gene expression in fibroblasts
,”
Biochim. Biophys. Acta, Mol. Cell Res.
1793
,
911
920
(
2009
).
55.
M. S.
Kolodney
and
E. L.
Elson
, “
Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts
,”
J. Biol. Chem.
268
,
23850
23855
(
1993
).
56.
M. S.
Kolodney
and
R. B.
Wysolmerski
, “
Isometric contraction by fibroblasts and endothelial cells in tissue culture: A quantitative study
,”
J. Cell Biol.
117
,
73
82
(
1992
).
57.
E. L.
Elson
and
G. M.
Genin
, “
Tissue constructs: Platforms for basic research and drug discovery
,”
Interface Focus
6
,
20150095
(
2016
).
58.
T.
Eschenhagen
 et al., “
Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system
,”
FASEB J.
11
,
683
694
(
1997
).
59.
H.
Vandenburgh
 et al., “
Drug-screening platform based on the contractility of tissue-engineered muscle
,”
Muscle Nerve
37
,
438
447
(
2008
).
60.
J. P.
Marquez
 et al., “
High-throughput measurements of hydrogel tissue construct mechanics
,”
Tissue Eng. Part C
15
,
181
190
(
2009
).
61.
T.
Boudou
 et al., “
A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues
,”
Tissue Eng. Part A
18
,
910
919
(
2012
).
62.
N. L.
Tulloch
 et al., “
Growth of engineered human myocardium with mechanical loading and vascular coculture
,”
Circ. Res.
109
,
47
59
(
2011
).
63.
J. M.
Bliley
 et al., “
Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype
,”
Sci. Transl. Med.
13
,
eabd1817
(
2021
).
64.
X.
Sun
and
S. S.
Nunes
, “
Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes
,”
Methods
101
,
21
26
(
2016
).
65.
D. W.
Simmons
 et al., “
Hydrogel assisted double molding of 3D-print enables prestress regulation of micro-heart muscle physiology
,” bioRxiv:2022.07.23.501265 (
2022
).
66.
J.
Guo
 et al., “
Elastomer-grafted iPSC-derived micro heart muscles to investigate effects of mechanical loading on physiology
,”
ACS Biomater. Sci. Eng.
7
,
2973
2989
(
2020
).
67.
C. A.
Blair
and
B. L.
Pruitt
, “
Mechanobiology assays with applications in cardiomyocyte biology and cardiotoxicity
,”
Adv. Healthcare Mater.
9
,
1901656
(
2020
).
68.
K.
Toischer
 et al., “
Differential cardiac remodeling in preload versus afterload
,”
Circulation
122
,
993
1003
(
2010
).
69.
M. L.
McCain
,
H.
Lee
,
Y.
Aratyn-Schaus
,
A. G.
Kléber
, and
K. K.
Parker
, “
Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
9881
9886
(
2012
).
70.
H.
Shi
,
C.
Wang
,
B. Z.
Gao
,
J. H.
Henderson
, and
Z.
Ma
, “
Cooperation between myofibril growth and costamere maturation in human cardiomyocytes
,”
Front. Bioeng. Biotechnol.
10
,
1049523
(
2022
).
71.
S.
Sun
 et al., “
Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate
,”
ACS Appl. Mater. Interfaces
12
,
21450
21462
(
2020
).
72.
H.
Shi
 et al., “
Profiling the responsiveness of focal adhesions of human cardiomyocytes to extracellular dynamic nano-topography
,”
Bioact. Mater.
10
,
367
377
(
2021
).
73.
P. Y.
Mengsteab
 et al., “
Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues
,”
Biomaterials
86
,
1
10
(
2016
).
74.
K. M.
Broughton
and
B.
Russell
, “
Cardiomyocyte subdomain contractility arising from microenvironmental stiffness and topography
,”
Biomech. Model. Mechanobiol.
14
,
589
602
(
2015
).
75.
A. J. S.
Ribeiro
 et al., “
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12705
12710
(
2015
).
76.
M.
Ibrahim
 et al., “
Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation
,”
J. Cell. Mol. Med.
16
,
2910
2918
(
2012
).
77.
S. D.
Boothe
 et al., “
The effect of substrate stiffness on cardiomyocyte action potentials
,”
Cell. Biochem. Biophys.
74
,
527
535
(
2016
).
78.
G.
Iribe
,
M.
Helmes
, and
P.
Kohl
, “
Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load
,”
Am. J. Physiol.-Heart Circ. Physiol.
292
,
H1487
H1497
(
2007
).
79.
J.
Sadoishima
,
Y.
Xu
,
H. S.
Slayter
, and
S.
Izumo
, “
Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro
,”
Cell
75
,
977
984
(
1993
).
80.
T.
Yamazaki
 et al., “
Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy
,”
Circ. Res.
82
,
430
437
(
1998
).
81.
O. F.
Bueno
 et al., “
The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice
,”
EMBO J.
19
,
6341
6350
(
2000
).
82.
Y.
Seko
 et al., “
Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes
,”
Biochem. Biophys. Res. Commun.
259
,
8
14
(
1999
).
83.
K. G.
Shyu
,
C. C.
Chen
,
B. W.
Wang
, and
P.
Kuan
, “
Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes
,”
J. Mol. Cell. Cardiol.
33
,
691
698
(
2001
).
84.
S. M.
Gopalan
 et al., “
Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers
,”
Biotechnol. Bioeng.
81
,
578
587
(
2003
).
85.
S.
Dhein
 et al., “
Mechanical control of cell biology: Effects cyclic mechanical stretch cardiomyocyte cellular organization
,”
Prog. Biophys. Mol. Biol.
115
,
93
102
(
2014
).
86.
X.
Yang
,
L.
Pabon
, and
C. E.
Murry
, “
Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes
,”
Circ. Res.
114
,
511
523
(
2014
).
87.
C. W.
van den Berg
 et al., “
Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells
,”
Development
142
,
3231
3238
(
2015
).
88.
J. C.
Garbern
 et al., “
Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence
,”
Circulation
141
,
285
300
(
2020
).
89.
R. J.
Mills
 et al., “
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E8372
E8381
(
2017
).
90.
N.
Huebsch
 et al., “
Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips
,”
Nat. Biomed. Eng.
6
,
372
388
(
2022
).
91.
N. Y.
Liaw
and
W.-H.
Zimmermann
, “
Mechanical stimulation in the engineering of heart muscle
,”
Adv. Drug Delivery Rev.
96
,
156
160
(
2016
).
92.
Y.
Yahalom-Ronen
,
D.
Rajchman
,
R.
Sarig
,
B.
Geiger
, and
E.
Tzahor
, “
Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion
,”
Elife
4
,
e07455
(
2015
).
93.
P. P. S. S.
Abadi
 et al., “
Engineering of mature human induced pluripotent stem cell‐derived cardiomyocytes using substrates with multiscale topography
,”
Adv. Funct. Mater.
28
,
1707378
(
2018
).
94.
J. L.
Young
and
A. J.
Engler
, “
Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro
,”
Biomaterials
32
,
1002
1009
(
2011
).
95.
J.
Kreutzer
 et al., “
Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes
,”
Biomech. Model. Mechanobiol.
19
,
291
303
(
2020
).
96.
A.
Agrawal
 et al., “
Stimuli-responsive liquid crystal elastomers for dynamic cell culture
,”
J. Mater. Res.
30
,
453
462
(
2015
).
97.
Y.
Zhang
 et al., “
Mechanical model of the physiological microenvironment of cardiomyocytes
,”
Appl. Nanosci.
13
,
1201
(
2021
).
98.
T. J.
Kolanowski
 et al., “
Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system
,”
Acta Biomater.
102
,
273
286
(
2020
).
99.
K.
Ronaldson-Bouchard
 et al., “
Advanced maturation of human cardiac tissue grown from pluripotent stem cells
,”
Nature
556
,
239
243
(
2018
).
100.
W.
Dou
 et al., “
A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-cardiomyocytes
,”
Biosens. Bioelectron.
175
,
112875
(
2021
).
101.
N.
Shen
 et al., “
Steps toward maturation of embryonic stem cell-derived cardiomyocytes by defined physical signals
,”
Stem Cell Rep.
9
,
122
135
(
2017
).
102.
M.
Song
 et al., “
Development of magnetic torque stimulation (MTS) utilizing rotating uniform magnetic field for mechanical activation of cardiac cells
,”
Nanomaterials
10
,
1684
(
2020
).
103.
W. W.
Sharp
,
D. G.
Simpson
,
T. K.
Borg
,
A. M.
Samarel
, and
L.
Terracio
, “
Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes,” Am.
J. Physiol. Heart Circ. Physiol.
273
,
H546
(
1997
).
104.
A. A.
Abdeen
,
J.
Lee
,
N. A.
Bharadwaj
,
R. H.
Ewoldt
, and
K. A.
Kilian
, “
Temporal modulation of stem cell activity using magnetoactive hydrogels
,”
Adv. Healthcare Mater.
5
,
2536
2544
(
2016
).
105.
E. A.
Corbin
 et al., “
Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes
,”
ACS Appl. Mater. Interfaces
11
,
20603
20614
(
2019
).
106.
Y. C.
Yeh
 et al., “
Mechanically dynamic PDMS substrates to investigate changing cell environments
,”
Biomaterials
145
,
23
32
(
2017
).
107.
C.
Yang
,
M. W.
Tibbitt
,
L.
Basta
, and
K. S.
Anseth
, “
Mechanical memory and dosing influence stem cell fate
,”
Nat. Mater.
13
,
645
652
(
2014
).
108.
J. D.
Kijlstra
 et al., “
Integrated analysis of contractile kinetics, force generation, and electrical activity in single human stem cell-derived cardiomyocytes
,”
Stem Cell Rep.
5
,
1226
1238
(
2015
).
109.
L.
Sala
 et al., “
MUSCLEMOTION: A versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo
,”
Circ. Res.
122
,
e5
e16
(
2018
).
110.
I.
Mannhardt
 et al., “
Human engineered heart tissue: Analysis of contractile force
,”
Stem Cell Rep.
7
,
29
42
(
2016
).
111.
M.
Takeda
 et al., “
Development of in vitro drug-induced cardiotoxicity assay by using three-dimensional cardiac tissues derived from human induced pluripotent stem cells
,”
Tissue Eng., Part C
24
,
56
67
(
2018
).
112.
I.
Mannhardt
,
C.
Warncke
,
H. K.
Trieu
,
J.
Muller
, and
T.
Eschenhagen
, “
Piezo-bending actuators for isometric or auxotonic contraction analysis of engineered heart tissue
,”
J. Tissue Eng. Regener. Med.
13
,
3
11
(
2019
).
113.
G.
Conant
 et al., “
High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model
,”
Stem Cell Rev. Rep.
13
,
335
346
(
2017
).
114.
A.
Hansen
 et al., “
Development of a drug screening platform based on engineered heart tissue
,”
Circ. Res.
107
,
35
44
(
2010
).
115.
A. J. S.
Ribeiro
 et al., “
Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes
,”
Circ. Res.
120
,
1572
1583
(
2017
).
116.
Z.
Ma
 et al., “
Three-dimensional filamentous human diseased cardiac tissue model
,”
Biomaterials
35
,
1367
1377
(
2014
).
117.
R.
Truitt
 et al., “
Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model
,”
JACC Basic Transl. Sci.
3
,
265
276
(
2018
).
118.
Z.
Jian
 et al., “
Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling
,”
Sci. Signal
7
,
ra27
(
2014
).
119.
A.
Leonard
 et al., “
Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues
,”
J. Mol. Cell. Cardiol.
118
,
147
158
(
2018
).
120.
M. L.
Rodriguez
,
T. R.
Werner
,
B.
Becker
,
T.
Eschenhagen
, and
M. N.
Hirt
, “
A magnetics-based approach for fine-tuning afterload in engineered heart tissues
,”
ACS Biomater. Sci. Eng.
5
,
3663
3675
(
2019
).
121.
M. N.
Hirt
 et al., “
Increased afterload induces pathological cardiac hypertrophy: A new in vitro model
,”
Basic Res. Cardiol.
107
,
307
(
2012
).
122.
H.
Parsa
,
B. Z.
Wang
, and
G.
Vunjak-Novakovic
, “
A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy
,”
Lab Chip
17
,
3264
3271
(
2017
).
123.
Z.
Ma
 et al., “
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload
,”
Nat. Biomed. Eng.
2
,
955
967
(
2018
).
124.
T. Y.
Wong
 et al., “
Mechanical Stretching simulates cardiac physiology and pathology through mechanosensor Piezo1
,”
J. Clin. Med.
7
,
410
(
2018
).
125.
S.
Martewicz
 et al., “
Transcriptomic characterization of a human in vitro model of arrhythmogenic cardiomyopathy under topological and mechanical stimuli
,”
Ann. Biomed. Eng.
47
,
852
865
(
2019
).
126.
H.
Yang
 et al., “
Dynamic myofibrillar remodeling in live cardiomyocytes under static stretch
,”
Sci. Rep.
6
,
20674
(
2016
).
127.
F.
Sheikh
,
R. S.
Ross
, and
J.
Chen
, “
Cell–cell connection to heart disease
,”
Trends Cardiovasc. Med.
19
,
182
190
(
2009
).
128.
D. E.
Ingber
, “
Mechanobiology and diseases of mechanotransduction
,”
Ann. Med.
35
,
564
577
(
2003
).
129.
A.
Asimaki
 et al., “
Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy
,”
Sci. Transl. Med.
6
,
240ra74
(
2014
).
130.
A. La
Gerche
,
D. J.
Rakhit
, and
G.
Claessen
, “
Exercise and the right ventricle: A potential Achilles' heel
,”
Cardiovasc. Res.
113
,
1499
1508
(
2017
).
131.
L.
Fabritz
 et al., “
Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice
,”
J. Am. Coll. Cardiol.
57
,
740
750
(
2011
).
132.
S.
Israeli-Rosenberg
,
A. M.
Manso
,
H.
Okada
, and
R. S.
Ross
, “
Integrins and integrin-associated proteins in the cardiac myocyte
,”
Circ. Res.
114
,
572
586
(
2014
).
133.
A.
Angulo-Urarte
,
T.
van der Wal
, and
S.
Huveneers
, “
Cell–cell junctions as sensors and transducers of mechanical forces
,”
Biochim. Biophys. Acta, Biomembr.
1862
,
183316
(
2020
).
134.
A.
Hartsock
and
W. J.
Nelson
, “
Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton
,”
Biochim. Biophys. Acta
1778
,
660
669
(
2008
).
135.
Q.
le Duc
 et al., “
Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner
,”
J. Cell Biol.
189
,
1107
1115
(
2010
).
136.
J.
Li
 et al., “
Alpha-catenins control cardiomyocyte proliferation by regulating yap activity
,”
Circ. Res.
116
,
70
79
(
2015
).
137.
K. J.
Green
,
A.
Jaiganesh
, and
J. A.
Broussard
, “
Desmosomes: Essential contributors to an integrated intercellular junction network
,”
F1000Research
8
,
F1000
(
2019
).
138.
C.
Basso
,
B.
Bauce
,
D.
Corrado
, and
G.
Thiene
, “
Pathophysiology of arrhythmogenic cardiomyopathy
,”
Nat. Rev. Cardiol.
9
,
223
233
(
2011
).
139.
R.
Lombardi
 et al., “
Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy
,”
Circ. Res.
104
,
1076
1084
(
2009
).
140.
M.
Krüger
and
W. A.
Linke
, “
Titin-based mechanical signalling in normal and failing myocardium
,”
J. Mol. Cell. Cardiol.
46
,
490
498
(
2009
).
141.
M.
Hongo
 et al., “
Effects of growth hormone on cardiac dysfunction and gene expression in genetic murine dilated cardiomyopathy
,”
Basic Res. Cardiol.
95
,
431
441
(
2000
).
142.
J. T.
Hinson
 et al., “
Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy
,”
Science
349
,
982
986
(
2015
).
143.
M.
Reconditi
 et al., “
Myosin filament activation in the heart is tuned to the mechanical task
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3240
3245
(
2017
).
144.
A.
Chopra
 et al., “
Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions
,”
Dev. Cell.
44
,
87
96
(
2018
).
145.
S. R.
Clippinger
 et al., “
Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
17831
17840
(
2019
).
146.
J. P.
Kerr
 et al., “
Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle
,”
Nat. Commun.
6
,
8526
8526
(
2015
).
147.
M. A.
Caporizzo
,
C. Y.
Chen
,
K.
Bedi
,
K. B.
Margulies
, and
B. L.
Prosser
, “
Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium
,”
Circulation
141
,
902
915
(
2020
).
148.
J. A.
Meier
 et al., “
Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production
,”
Sci. Signaling
10
,
eaag2588
(
2017
).
149.
S.
Yashirogi
 et al., “
AMPK regulates cell shape of cardiomyocytes by modulating turnover of microtubules through CLIP-170
,”
EMBO Rep.
22
,
e50949
(
2021
).
150.
D.
Kelly
,
L.
Mackenzie
,
P.
Hunter
,
B.
Smaill
, and
D. A.
Saint
, “
Gene expression of stretch-activated channels and mechanoelectric feedback in the heart
,”
Clin. Exp. Pharmacol. Physiol.
33
,
642
648
(
2006
).
151.
Z.
Pedrozo
 et al., “
Polycystin-1 is a cardiomyocyte mechanosensor that governs L-type Ca2+ channel protein stability
,”
Circulation
131
,
2131
2142
(
2015
).
152.
G. L.
Bakris
and
M.
Sorrentino
,
Hypertension: A Companion to Braunwald's Heart Disease
(
Elsevier Health Sciences
,
2017
).
153.
G.
Iribe
 et al., “
Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate
,”
Circ. Res.
104
,
787
795
(
2009
).
154.
Z.-Y.
Yu
 et al., “
Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice
,”
Nat. Cardiovasc. Res.
1
,
577
591
(
2022
).
155.
S.
Cho
 et al., “
Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest
,”
Dev. Cell.
49
,
920
935
(
2019
).
156.
G.
West
 et al., “
Deleterious assembly of the lamin A/C mutant p.S143P causes ER stress in familial dilated cardiomyopathy
,”
J. Cell Sci.
129
,
2732
2743
(
2016
).
157.
Y.
Zhao
 et al., “
Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat
,”
Eur. J. Histochem.
56
,
e32
(
2012
).
158.
M.
Song
,
Y.
Jang
,
S.-J.
Kim
, and
Y.
Park
, “
Cyclic stretching induces maturation of human-induced pluripotent stem cell-derived cardiomyocytes through nuclear-mechanotransduction
,”
Tissue Eng. Regener. Med.
19
,
781
792
(
2022
).
159.
M. H.
Mokalled
 et al., “
Myocardin-related transcription factors are required for cardiac development and function
,”
Dev. Biol.
406
,
109
116
(
2015
).
160.
Y.
Guo
 et al., “
Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2008861118
(
2021
).
161.
T.
Dorn
 et al., “
Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity
,”
EMBO J.
37
,
e98133
(
2018
).
162.
W. J.
Nelson
and
R.
Nusse
, “
Convergence of Wnt, β-catenin, and cadherin pathways
,”
Science
303
,
1483
1487
(
2004
).
163.
J. S.
Heo
and
J.-C.
Lee
, “
β-catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways
,”
J. Cell. Biochem.
112
,
1880
1889
(
2011
).
164.
J. L.
Young
,
K.
Kretchmer
,
M. G.
Ondeck
,
A. C.
Zambon
, and
A. J.
Engler
, “
Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation
,”
Sci. Rep.
4
,
6425
(
2014
).
165.
W.
Cai
 et al., “
A nodal-to-TGFβ cascade exerts biphasic control over cardiopoiesis
,”
Circ. Res.
111
,
876
881
(
2012
).
166.
I.
Banerjee
 et al., “
Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling
,”
J. Mol. Cell. Cardiol.
79
,
133
144
(
2015
).
167.
V.
Divakaran
 et al., “
Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading
,”
Circ. Heart Failure
2
,
633
642
(
2009
).
168.
H.
Tokola
 et al., “
Bone morphogenetic protein-2: A potential autocrine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes
,”
Mol. Cell. Endocrinol.
399
,
9
21
(
2015
).
169.
J.
Wang
,
S.
Liu
,
T.
Heallen
, and
J. F.
Martin
, “
The Hippo pathway in the heart: Pivotal roles in development, disease, and regeneration
,”
Nat. Rev. Cardiol.
15
,
672
684
(
2018
).
170.
E.
Bassat
 et al., “
The extracellular matrix protein agrin promotes heart regeneration in mice
,”
Nature
547
,
179
184
(
2017
).
171.
K.-I.
Wada
,
K.
Itoga
,
T.
Okano
,
S.
Yonemura
, and
H.
Sasaki
, “
Hippo pathway regulation by cell morphology and stress fibers
,”
Development
138
,
3907
3914
(
2011
).
172.
D.
Mosqueira
 et al., “
Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure
,”
ACS Nano
8
,
2033
2047
(
2014
).
173.
L.
LeBlanc
,
N.
Ramirez
, and
J.
Kim
, “
Context-dependent roles of YAP/TAZ in stem cell fates and cancer
,”
Cell. Mol. Life Sci.
78
,
4201
4219
(
2021
).
174.
I. K.
Adiga
and
R. N.
Renuka
, “
Multiple signaling pathways coordinately mediate reactive oxygen species dependent cardiomyocyte hypertrophy
,”
Cell Biochem. Funct.
26
,
346
351
(
2008
).
175.
C.
Murdoch
,
M.
Zhang
,
A.
Cave
, and
A.
Shah
, “
NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure
,”
Cardiovasc. Res.
71
,
208
215
(
2006
).
176.
K.
Yoshioka
 et al., “
Sepiapterin prevents left ventricular hypertrophy and dilatory remodeling induced by pressure overload in rats
,”
Am. J. Physiol.-Heart Circ. Physiol.
309
,
H1782
H1791
(
2015
).
177.
J.
Pan
 et al., “
PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes
,”
J. Cell. Physiol.
202
,
536
553
(
2004
).
178.
T. Y.
Wong
, “
Mechanical stretching simulates cardiac physiology and pathology through mechanosensor Piezo1
,”
FASEB J.
33
,
785
(
2019
).
179.
E.
Mirdamadi
,
J. W.
Tashman
,
D. J.
Shiwarski
,
R. N.
Palchesko
, and
A. W.
Feinberg
, “
FRESH 3D bioprinting a full-size model of the human heart
,”
ACS Biomater. Sci. Eng.
6
,
6453
6459
(
2020
).
180.
C. S.
Ong
 et al., “
Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes
,”
Sci. Rep.
7
,
4566
(
2017
).
181.
N.
Noor
 et al., “
3D printing of personalized thick and perfusable cardiac patches and hearts
,”
Adv. Sci.
6
,
1900344
(
2019
).
182.
A.
Lee
 et al., “
3D bioprinting of collagen to rebuild components of the human heart
,”
Science
365
,
482
(
2019
).
183.
V.
Swaminathan
and
M.
Gloerich
, “
Decoding mechanical cues by molecular mechanotransduction
,”
Curr. Opin. Cell Biol.
72
,
72
80
(
2021
).
184.
A. H.
Lewis
,
A. F.
Cui
,
M. F.
McDonald
, and
J.
Grandl
, “
Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels
,”
Cell Rep.
19
,
2572
2585
(
2017
).
185.
M. H.
Jo
,
W. T.
Cottle
, and
T.
Ha
, “
Real-time measurement of molecular tension during cell adhesion and migration using multiplexed differential analysis of tension gauge tethers
,”
ACS Biomater. Sci. Eng.
5
,
3856
3863
(
2018
).
186.
Y.
Qin
 et al., “
A stretchable scaffold with electrochemical sensing for 3D culture, mechanical loading, and real-time monitoring of cells
,”
Adv. Sci.
8
,
e2003738
(
2021
).
187.
H.
Liu
,
J. F.
Usprech
,
P. K.
Parameshwar
,
Y.
Sun
, and
C. A.
Simmons
, “
Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness
,”
Sci Adv
7
(
19
),
eabe7204
(
2021
).
188.
Y.
Rudy
and
J. R.
Silva
, “
Computational biology in the study of cardiac ion channels and cell electrophysiology
,”
Q. Rev. Biophys.
39
,
57
116
(
2006
).
189.
F.
Liu
 et al., “
A new model of myofibroblast-cardiomyocyte interactions and their differences across species
,”
Biophys. J.
120
,
3764
3775
(
2021
).
190.
B.
Sari
 et al., “
Omics technologies for high-throughput-screening of cell-biomaterial interactions
,”
Mol. Omics
18
,
591
615
(
2022
).
191.
M.
Darnell
and
D. J.
Mooney
, “
Leveraging advances in biology to design biomaterials
,”
Nat. Mater.
16
,
1178
1185
(
2017
).
192.
M. N.
Hirt
 et al., “
Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology
,”
J. Mol. Cell. Cardiol.
81
,
1
9
(
2015
).
193.
A. E.
Saliba
,
A. J.
Westermann
,
S. A.
Gorski
, and
J.
Vogel
, “
Single-cell RNA-seq: Advances and future challenges
,”
Nucl. Acids Res.
42
,
8845
8860
(
2014
).
194.
A. L.
Koenig
 et al., “
Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure
,”
Nat. Cardiovasc. Res.
1
,
263
280
(
2022
).
195.
C.
Giesen
 et al., “
Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
,”
Nat. Methods
11
,
417
422
(
2014
).
196.
J.-R.
Lin
,
M.
Fallahi-Sichani
, and
P. K.
Sorger
, “
Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method
,”
Nat. Commun.
6
,
8390
(
2015
).
197.
S. C.
Bendall
 et al., “
Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
,”
Science
332
,
687
696
(
2011
).
198.
P.
Hoang
 et al., “
Engineering spatial-organized cardiac organoids for developmental toxicity testing
,”
Stem Cell Rep.
16
,
1228
1244
(
2021
).
199.
A. C.
Daly
,
M. D.
Davidson
, and
J. A.
Burdick
, “
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
,”
Nat. Commun.
12
,
753
(
2021
).
200.
M. A.
Skylar-Scott
 et al., “
Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues
,”
Nat. Biomed. Eng.
6
,
449
462
(
2022
).
You do not currently have access to this content.