Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.

1.
L.
Larsson
,
J.
Frisén
, and
J.
Lundeberg
, “
Spatially resolved transcriptomics adds a new dimension to genomics
,”
Nat. Methods
18
,
15
18
(
2021
).
2.
J. S.
Packer
,
Q.
Zhu
,
C.
Huynh
,
P.
Sivaramakrishnan
,
E.
Preston
,
H.
Dueck
,
D.
Stefanik
,
K.
Tan
,
C.
Trapnell
,
J.
Kim
,
R. H.
Waterston
, and
J. I.
Murray
, “
A lineage-resolved molecular atlas of c. elegans embryogenesis at single-cell resolution
,”
Science
365
,
eaax1971
(
2019
).
3.
X.
Han
,
R.
Wang
,
Y.
Zhou
,
L.
Fei
,
H.
Sun
,
S.
Lai
,
A.
Saadatpour
,
Z.
Zhou
,
H.
Chen
,
F.
Ye
,
D.
Huang
,
Y.
Xu
,
W.
Huang
,
M.
Jiang
,
X.
Jiang
,
J.
Mao
,
Y.
Chen
,
C.
Lu
,
J.
Xie
,
Q.
Fang
,
Y.
Wang
,
R.
Yue
,
T.
Li
,
H.
Huang
,
S. H.
Orkin
,
G.-C.
Yuan
,
M.
Chen
, and
G.
Guo
, “
Mapping the mouse cell atlas by microwell-seq
,”
Cell
172
,
1091
1107
(
2018
).
4.
N.
Schaum
,
J.
Karkanias
,
N. F.
Neff
,
A. P.
May
,
S. R.
Quake
,
T.
Wyss-Coray
,
S.
Darmanis
,
J.
Batson
,
O.
Botvinnik
,
M. B.
Chen
,
S.
Chen
,
F.
Green
,
R. C.
Jones
,
A.
Maynard
,
L.
Penland
,
A. O.
Pisco
,
R. V.
Sit
,
G. M.
Stanley
,
J. T.
Webber
,
F.
Zanini
,
A. S.
Baghel
,
I.
Bakerman
,
I.
Bansal
,
D.
Berdnik
,
B.
Bilen
,
D.
Brownfield
,
C.
Cain
,
M. B.
Chen
,
M.
Cho
,
G.
Cirolia
,
S. D.
Conley
,
A.
Demers
,
K.
Demir
,
A.
de Morree
,
T.
Divita
,
H.
du Bois
,
L. B. T.
Dulgeroff
,
H.
Ebadi
,
F. H.
Espinoza
,
M.
Fish
,
Q.
Gan
,
B. M.
George
,
A.
Gillich
,
G.
Genetiano
,
X.
Gu
,
G. S.
Gulati
,
Y.
Hang
,
S.
Hosseinzadeh
,
A.
Huang
,
T.
Iram
,
T.
Isobe
,
F.
Ives
,
R. C.
Jones
,
K. S.
Kao
,
G.
Karnam
,
A. M.
Kershner
,
B. M.
Kiss
,
W.
Kong
,
M. E.
Kumar
,
J. Y.
Lam
,
D. P.
Lee
,
S. E.
Lee
,
G.
Li
,
Q.
Li
,
L.
Liu
,
A.
Lo
,
W.-J.
Lu
,
A.
Manjunath
,
A. P.
May
,
K. L.
May
,
O. L.
May
,
M.
McKay
,
R. J.
Metzger
,
M.
Mignardi
,
D.
Min
,
A. N.
Nabhan
,
N. F.
Neff
,
K. M.
Ng
,
J.
Noh
,
R.
Patkar
,
W. C.
Peng
,
R.
Puccinelli
,
E. J.
Rulifson
,
S. S.
Sikandar
,
R.
Sinha
,
R. V.
Sit
,
K.
Szade
,
W.
Tan
,
C.
Tato
,
K.
Tellez
,
K. J.
Travaglini
,
C.
Tropini
,
L.
Waldburger
,
L. J.
van Weele
,
M. N.
Wosczyna
,
J.
Xiang
,
S.
Xue
,
J.
Youngyunpipatkul
,
M. E.
Zardeneta
,
F.
Zhang
,
L.
Zhou
,
A. P.
May
,
N. F.
Neff
,
R. V.
Sit
,
P.
Castro
,
D.
Croote
,
J. L.
DeRisi
,
G. M.
Stanley
,
J. T.
Webber
,
A. S.
Baghel
,
M. B.
Chen
,
F. H.
Espinoza
,
B. M.
George
,
G. S.
Gulati
,
A. M.
Kershner
,
B. M.
Kiss
,
C. S.
Kuo
,
J. Y.
Lam
,
B.
Lehallier
,
A. N.
Nabhan
,
K. M.
Ng
,
P. K.
Nguyen
,
E. J.
Rulifson
,
S. S.
Sikandar
,
S. Y.
Tan
,
K. J.
Travaglini
,
L. J.
van Weele
,
B. M.
Wang
,
M. N.
Wosczyna
,
H.
Yousef
,
A. P.
May
,
S. R.
Quake
,
G. M.
Stanley
,
J. T.
Webber
,
P. A.
Beachy
,
C. K. F.
Chan
,
B. M.
George
,
G. S.
Gulati
,
K. C.
Huang
,
A. M.
Kershner
,
B. M.
Kiss
,
A. N.
Nabhan
,
K. M.
Ng
,
P. K.
Nguyen
,
E. J.
Rulifson
,
S. S.
Sikandar
,
K. J.
Travaglini
,
B. M.
Wang
,
K.
Weinberg
,
M. N.
Wosczyna
,
S. M.
Wu
,
B. A.
Barres
,
P. A.
Beachy
,
C. K. F.
Chan
,
M. F.
Clarke
,
S. K.
Kim
,
M. A.
Krasnow
,
M. E.
Kumar
,
C. S.
Kuo
,
A. P.
May
,
R. J.
Metzger
,
N. F.
Neff
,
R.
Nusse
,
P. K.
Nguyen
,
T. A.
Rando
,
J.
Sonnenburg
,
B. M.
Wang
,
I. L.
Weissman
,
S. M.
Wu
,
S. R.
Quake
,
T. T. M. Consortium, O. coordination, L. coordination, O. collection, processing, L. preparation, sequencing, C. data analysis, C. type annotation, W. Group, S. text writing Group, and P. investigators,
Single-cell transcriptomics of 20 mouse organs creates a tabula muris
,”
Nature
562
,
367
372
(
2018
).
5.
A.
Regev
,
S. A.
Teichmann
,
E. S.
Lander
,
I.
Amit
,
C.
Benoist
,
E.
Birney
,
B.
Bodenmiller
,
P.
Campbell
,
P.
Carninci
,
M.
Clatworthy
,
H.
Clevers
,
B.
Deplancke
,
I.
Dunham
,
J.
Eberwine
,
R.
Eils
,
W.
Enard
,
A.
Farmer
,
L.
Fugger
,
B.
Gottgens
,
N.
Hacohen
,
M.
Haniffa
,
M.
Hemberg
,
S.
Kim
,
P.
Klenerman
,
A.
Kriegstein
,
E.
Lein
,
S.
Linnarsson
,
E.
Lundberg
,
J.
Lundeberg
,
P.
Majumder
,
J. C.
Marioni
,
M.
Merad
,
M.
Mhlanga
,
M.
Nawijn
,
M.
Netea
,
G.
Nolan
,
D.
Pe'er
,
A.
Phillipakis
,
C. P.
Ponting
,
S.
Quake
,
W.
Reik
,
O.
Rozenblatt-Rosen
,
J.
Sanes
,
R.
Satija
,
T. N.
Schumacher
,
A.
Shalek
,
E.
Shapiro
,
P.
Sharma
,
J. W.
Shin
,
O.
Stegle
,
M.
Stratton
,
M. J. T.
Stubbington
,
F. J.
Theis
,
M.
Uhlen
,
A.
van Oudenaarden
,
A.
Wagner
,
F.
Watt
,
J.
Weissman
,
B.
Wold
,
R.
Xavier
, and
N.
Yosef
, “
The human cell atlas
,”
Elife
6
,
e27041
(
2017
).
6.
K.
Davie
,
J.
Janssens
,
D.
Koldere
,
M.
De Waegeneer
,
U.
Pech
,
Ł.
Kreft
,
S.
Aibar
,
S.
Makhzami
,
V.
Christiaens
,
C.
Bravo González-Blas
,
S.
Poovathingal
,
G.
Hulselmans
,
K. I.
Spanier
,
T.
Moerman
,
B.
Vanspauwen
,
S.
Geurs
,
T.
Voet
,
J.
Lammertyn
,
B.
Thienpont
,
S.
Liu
,
N.
Konstantinides
,
M.
Fiers
,
P.
Verstreken
, and
S.
Aerts
, “
A single-cell transcriptome atlas of the aging drosophila brain
,”
Cell
174
,
982
998
(
2018
).
7.
Y.
Zhang
,
D.
Wang
,
M.
Peng
,
L.
Tang
,
J.
Ouyang
,
F.
Xiong
,
C.
Guo
,
Y.
Tang
,
Y.
Zhou
,
Q.
Liao
,
X.
Wu
,
H.
Wang
,
J.
Yu
,
Y.
Li
,
X.
Li
,
G.
Li
,
Z.
Zeng
,
Y.
Tan
, and
W.
Xiong
, “
Single-cell RNA sequencing in cancer research
,”
J. Exp. Clin. Cancer Res.
40
,
81
(
2021
).
8.
A.
Derakhshani
,
Z.
Asadzadeh
,
H.
Safarpour
,
P.
Leone
,
M. A.
Shadbad
,
A.
Heydari
,
B.
Baradaran
, and
V.
Racanelli
, “
Regulation of CTLA-4 and PD-l1 expression in relapsing-remitting multiple sclerosis patients after treatment with fingolimod, IFNβ-1α, glatiramer acetate, and dimethyl fumarate drugs
,”
J. Pers. Med.
11
,
721
(
2021
).
9.
A.
Kusnadi
,
C.
Ramírez-Suástegui
,
V.
Fajardo
,
S. J.
Chee
,
B. J.
Meckiff
,
H.
Simon
,
E.
Pelosi
,
G.
Seumois
,
F.
Ay
,
P.
Vijayanand
, and
C. H.
Ottensmeier
, “
Severely ill patients with COVID-19 display impaired exhaustion features in SARS-CoV-2–reactive cd8+ T cells
,”
Sci. Immunol.
6
,
eabe4782
(
2021
).
10.
N.
Erfanian
,
A. A.
Heydari
,
P.
Iañez
,
A.
Derakhshani
,
M.
Ghasemigol
,
M.
Farahpour
,
S.
Nasseri
,
H.
Safarpour
, and
A.
Sahebkar
, “
Deep learning applications in single-cell omics data analysis
,”
bioRxiv
(
2021
).
11.
S. R.
Park
,
S.
Namkoong
,
L.
Friesen
,
C.-S.
Cho
,
Z. Z.
Zhang
,
Y.-C.
Chen
,
E.
Yoon
,
C. H.
Kim
,
H.
Kwak
,
H. M.
Kang
, and
J. H.
Lee
, “
Single-cell transcriptome analysis of colon cancer cell response to 5-fluorouracil-induced DNA damage
,”
Cell Rep.
32
,
108077
(
2020
).
12.
Y.
Su
,
D.
Chen
,
D.
Yuan
,
C.
Lausted
,
J.
Choi
,
C. L.
Dai
,
V.
Voillet
,
V. R.
Duvvuri
,
K.
Scherler
,
P.
Troisch
,
P.
Baloni
,
G.
Qin
,
B.
Smith
,
S. A.
Kornilov
,
C.
Rostomily
,
A.
Xu
,
J.
Li
,
S.
Dong
,
A.
Rothchild
,
J.
Zhou
,
K.
Murray
,
R.
Edmark
,
S.
Hong
,
J. E.
Heath
,
J.
Earls
,
R.
Zhang
,
J.
Xie
,
S.
Li
,
R.
Roper
,
L.
Jones
,
Y.
Zhou
,
L.
Rowen
,
R.
Liu
,
S.
Mackay
,
D. S.
O'Mahony
,
C. R.
Dale
,
J. A.
Wallick
,
H. A.
Algren
,
M. A.
Zager
,
W.
Wei
,
N. D.
Price
,
S.
Huang
,
N.
Subramanian
,
K.
Wang
,
A. T.
Magis
,
J. J.
Hadlock
,
L.
Hood
,
A.
Aderem
,
J. A.
Bluestone
,
L. L.
Lanier
,
P. D.
Greenberg
,
R.
Gottardo
,
M. M.
Davis
,
J. D.
Goldman
, and
J. R.
Heath
, “
Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19
,”
Cell
183
,
1479
1495
(
2020
).
13.
F.
Iqbal
,
A.
Lupieri
,
M.
Aikawa
, and
E.
Aikawa
, “
Harnessing single-cell RNA sequencing to better understand how diseased cells behave the way they do in cardiovascular disease
,”
Arteriosclerosis Thrombosis Vasc. Biol.
41
,
585
600
(
2021
).
14.
M.
Heming
,
X.
Li
,
S.
Rauber
,
A. K.
Mausberg
,
A.-L.
Borsch
,
M.
Hartlehnert
,
A.
Singhal
,
I.-N.
Lu
,
M.
Fleischer
,
F.
Szepanowski
,
O.
Witzke
,
T.
Brenner
,
U.
Dittmer
,
N.
Yosef
,
C.
Kleinschnitz
,
H.
Wiendl
,
M.
Stettner
, and
G. M. Z.
Horste
, “
Neurological manifestations of COVID-19 feature t cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid
,”
Immunity
54
,
164
175
(
2021
).
15.
A. A.
Pollen
,
T. J.
Nowakowski
,
J.
Shuga
,
X.
Wang
,
A. A.
Leyrat
,
J. H.
Lui
,
N.
Li
,
L.
Szpankowski
,
B.
Fowler
,
P.
Chen
,
N.
Ramalingam
,
G.
Sun
,
M.
Thu
,
M.
Norris
,
R.
Lebofsky
,
D.
Toppani
,
D. W.
Kemp
,
M.
Wong
,
B.
Clerkson
,
B. N.
Jones
,
S.
Wu
,
L.
Knutsson
,
B.
Alvarado
,
J.
Wang
,
L. S.
Weaver
,
A. P.
May
,
R. C.
Jones
,
M. A.
Unger
,
A. R.
Kriegstein
, and
J. A. A.
West
, “
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
,”
Nat. Biotechnol.
32
,
1053
1058
(
2014
).
16.
B.
Treutlein
,
D. G.
Brownfield
,
A. R.
Wu
,
N. F.
Neff
,
G. L.
Mantalas
,
F. H.
Espinoza
,
T. J.
Desai
,
M. A.
Krasnow
, and
S. R.
Quake
, “
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
,”
Nature
509
,
371
375
(
2014
).
17.
M. J.
Barresi
and
S. F.
Gilbert
,
Developmental Biology
(
Oxford University Press
,
2019
).
18.
R.
Dries
,
J.
Chen
,
N.
Del Rossi
,
M. M.
Khan
,
A.
Sistig
, and
G.-C.
Yuan
, “
Advances in spatial transcriptomic data analysis
,”
Genome Res.
31
,
1706
1718
(
2021
).
19.
T.
Noel
,
Q. S.
Wang
,
A.
Greka
, and
J. L.
Marshall
, “
Principles of spatial transcriptomics analysis: A practical walk-through in kidney tissue
,”
Front. Physiol.
12
,
809346
(
2022
).
20.
A.
Rao
,
D.
Barkley
,
G. S.
França
, and
I.
Yanai
, “
Exploring tissue architecture using spatial transcriptomics
,”
Nature
596
,
211
220
(
2021
).
21.
R.
Ke
,
M.
Mignardi
,
A.
Pacureanu
,
J.
Svedlund
,
J.
Botling
,
C.
Wahlby
, and
M.
Nilsson
, “
In situ sequencing for RNA analysis in preserved tissue and cells
,”
Nat. Methods
10
,
857
860
(
2013
).
22.
S.
Codeluppi
,
L. E.
Borm
,
A.
Zeisel
,
G. L.
Manno
,
J. A.
van Lunteren
,
C. I.
Svensson
, and
S.
Linnarsson
, “
Spatial organization of the somatosensory cortex revealed by cyclic smFISH
,”
bioRxiv
(
2018
).
23.
A.
Raj
,
P.
van den Bogaard
,
S. A.
Rifkin
,
A.
van Oudenaarden
, and
S.
Tyagi
, “
Imaging individual mRNA molecules using multiple singly labeled probes
,”
Nat. Methods
5
,
877
879
(
2008
).
24.
A. M.
Femino
,
F. S.
Fay
,
K.
Fogarty
, and
R. H.
Singer
, “
Visualization of single RNA transcripts in situ
,”
Science
280
,
585
590
(
1998
).
25.
S.
Alon
,
D. R.
Goodwin
,
A.
Sinha
,
A. T.
Wassie
,
F.
Chen
,
E. R.
Daugharthy
,
Y.
Bando
,
A.
Kajita
,
A. G.
Xue
,
K.
Marrett
,
R.
Prior
,
Y.
Cui
,
A. C.
Payne
,
C.-C.
Yao
,
H.-J.
Suk
,
R.
Wang
,
C.-C. J.
Yu
,
P.
Tillberg
,
P.
Reginato
,
N.
Pak
,
S.
Liu
,
S.
Punthambaker
,
E. P. R.
Iyer
,
R. E.
Kohman
,
J. A.
Miller
,
E. S.
Lein
,
A.
Lako
,
N.
Cullen
,
S.
Rodig
,
K.
Helvie
,
D. L.
Abravanel
,
N.
Wagle
,
B. E.
Johnson
,
J.
Klughammer
,
M.
Slyper
,
J.
Waldman
,
J.
Jané-Valbuena
,
O.
Rozenblatt-Rosen
,
A.
Regev
,
I.
Consortium
,
G. M.
Church
,
A. H.
Marblestone
,
E. S.
Boyden
,
H. R.
Ali
,
M. A.
Sa'd
,
S.
Alon
,
S.
Aparicio
,
G.
Battistoni
,
S.
Balasubramanian
,
R.
Becker
,
B.
Bodenmiller
,
E. S.
Boyden
,
D.
Bressan
,
A.
Bruna
,
M.
Burger
,
C.
Caldas
,
M.
Callari
,
I. G.
Cannell
,
H.
Casbolt
,
N.
Chornay
,
Y.
Cui
,
A.
Dariush
,
K.
Dinh
,
A.
Emenari
,
Y.
Eyal-Lubling
,
J.
Fan
,
A.
Fatemi
,
E.
Fisher
,
E. A.
González-Solares
,
C.
González-Fernández
,
D.
Goodwin
,
W.
Greenwood
,
F.
Grimaldi
,
G. J.
Hannon
,
O.
Harris
,
S.
Harris
,
C.
Jauset
,
J. A.
Joyce
,
E. D.
Karagiannis
,
T.
Kovačević
,
L.
Kuett
,
R.
Kunes
,
A. K.
Yoldaş
,
D.
Lai
,
E.
Laks
,
H.
Lee
,
M.
Lee
,
G.
Lerda
,
Y.
Li
,
A.
McPherson
,
N.
Millar
,
C. M.
Mulvey
,
F.
Nugent
,
C. H.
O'Flanagan
,
M.
Paez-Ribes
,
I.
Pearsall
,
F.
Qosaj
,
A. J.
Roth
,
O. M.
Rueda
,
T.
Ruiz
,
K.
Sawicka
,
L. A.
Sepúlveda
,
S. P.
Shah
,
A.
Shea
,
A.
Sinha
,
A.
Smith
,
S.
Tavaré
,
S.
Tietscher
,
I.
Vázquez-García
,
S. L.
Vogl
,
N. A.
Walton
,
A. T.
Wassie
,
S. S.
Watson
,
J.
Weselak
,
S. A.
Wild
,
E.
Williams
,
J.
Windhager
,
T.
Whitmarsh
,
C.
Xia
,
P.
Zheng
, and
X.
Zhuang
, “
Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems
,”
Science
371
,
eaax2656
(
2021
).
26.
S.
Codeluppi
,
L. E.
Borm
,
A.
Zeisel
,
G.
La Manno
,
J. A.
van Lunteren
,
C. I.
Svensson
, and
S.
Linnarsson
, “
Spatial organization of the somatosensory cortex revealed by osmFISH
,”
Nat. Methods
15
,
932
935
(
2018
).
27.
K. H.
Chen
,
A. N.
Boettiger
,
J. R.
Moffitt
,
S.
Wang
, and
X.
Zhuang
, “
Spatially resolved, highly multiplexed RNA profiling in single cells
,”
Science
348
,
aaa6090
(
2015
).
28.
C.-H. L.
Eng
,
M.
Lawson
,
Q.
Zhu
,
R.
Dries
,
N.
Koulena
,
Y.
Takei
,
J.
Yun
,
C.
Cronin
,
C.
Karp
,
G.-C.
Yuan
, and
L.
Cai
, “
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+
,”
Nature
568
,
235
239
(
2019
).
29.
X.
Wang
,
W. E.
Allen
,
M. A.
Wright
,
E. L.
Sylwestrak
,
N.
Samusik
,
S.
Vesuna
,
K.
Evans
,
C.
Liu
,
C.
Ramakrishnan
,
J.
Liu
,
G. P.
Nolan
,
F.-A.
Bava
, and
K.
Deisseroth
, “
Three-dimensional intact-tissue sequencing of single-cell transcriptional states
,”
Science
361
,
eaat5691
(
2018
).
30.
10x Genomics
, see https://www.10xgenomics.com/spatial-transcriptomics for “
Spatial transcriptomics
,”
2021
.
31.
P. L.
Ståhl
,
F.
Salmén
,
S.
Vickovic
,
A.
Lundmark
,
J. F.
Navarro
,
J.
Magnusson
,
S.
Giacomello
,
M.
Asp
,
J. O.
Westholm
,
M.
Huss
,
A.
Mollbrink
,
S.
Linnarsson
,
S.
Codeluppi
,
Å.
Borg
,
F.
Pontén
,
P. I.
Costea
,
P.
Sahlén
,
J.
Mulder
,
O.
Bergmann
,
J.
Lundeberg
, and
J.
Frisén
, “
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
,”
Science
353
,
78
82
(
2016
).
32.
S. G.
Rodriques
,
R. R.
Stickels
,
A.
Goeva
,
C. A.
Martin
,
E.
Murray
,
C. R.
Vanderburg
,
J.
Welch
,
L. M.
Chen
,
F.
Chen
, and
E. Z.
Macosko
, “
Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
,”
Science
363
,
1463
1467
(
2019
).
33.
S.
Vickovic
,
G.
Eraslan
,
F.
Salmén
,
J.
Klughammer
,
L.
Stenbeck
,
D.
Schapiro
,
T.
Aijo
,
R.
Bonneau
,
L.
Bergenstråhle
,
J.
Navarro
,
J.
Gould
,
G. K.
Griffin
,
Å.
Borg
,
M.
Ronaghi
,
J.
Frisén
,
J.
Lundeberg
,
A.
Regev
, and
P. L.
Ståhl
, “
High-definition spatial transcriptomics for in situ tissue profiling
,”
Nat. Methods
16
,
987
990
(
2019
).
34.
T.
Biancalani
,
G.
Scalia
,
L.
Buffoni
,
R.
Avasthi
,
Z.
Lu
,
A.
Sanger
,
N.
Tokcan
,
C. R.
Vanderburg
,
Å.
Segerstolpe
,
M.
Zhang
,
I.
Avraham-Davidi
,
S.
Vickovic
,
M.
Nitzan
,
S.
Ma
,
A.
Subramanian
,
M.
Lipinski
,
J.
Buenrostro
,
N. B.
Brown
,
D.
Fanelli
,
X.
Zhuang
,
E. Z.
Macosko
, and
A.
Regev
, “
Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram
,”
Nat. Methods
18
,
1352
1362
(
2021
).
35.
F.
Salmén
,
P. L.
Ståhl
,
A.
Mollbrink
,
J.
Navarro
,
S.
Vickovic
,
J.
Frisén
, and
J.
Lundeberg
, “
Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections
,”
Nat. Protoc.
13
,
2501
2534
(
2018
).
36.
A.
Jemt
,
F.
Salmén
,
A.
Lundmark
,
A.
Mollbrink
,
J.
Fernández Navarro
,
P. L.
Ståhl
,
T.
Yucel-Lindberg
, and
J.
Lundeberg
, “
An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries
,”
Sci. Rep.
6
,
37137
(
2016
).
37.
N. J.
Tustison
,
P. A.
Cook
,
A.
Klein
,
G.
Song
,
S. R.
Das
,
J. T.
Duda
,
B. M.
Kandel
,
N.
van Strien
,
J. R.
Stone
,
J. C.
Gee
, and
B. B.
Avants
, “
Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
,”
NeuroImage
99
,
166
179
(
2014
).
38.
G.
Balakrishnan
,
A.
Zhao
,
M. R.
Sabuncu
,
J.
Guttag
, and
A. V.
Dalca
, “
VoxelMorph: A learning framework for deformable medical image registration
,”
IEEE Trans. Med. Imaging
38
,
1788
1800
(
2019
).
39.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
40.
G.
Eraslan
,
L. M.
Simon
,
M.
Mircea
,
N. S.
Mueller
, and
F. J.
Theis
, “
Single-cell RNA-seq denoising using a deep count autoencoder
,”
Nat. Commun.
10
,
390
(
2019
).
41.
M. B.
Badsha
,
R.
Li
,
B.
Liu
,
Y. I.
Li
,
M.
Xian
,
N. E.
Banovich
, and
A. Q.
Fu
, “
Imputation of single-cell gene expression with an autoencoder neural network
,”
Quant. Biol.
8
,
78
94
(
2020
).
42.
X.
Li
,
K.
Wang
,
Y.
Lyu
,
H.
Pan
,
J.
Zhang
,
D.
Stambolian
,
K.
Susztak
,
M. P.
Reilly
,
G.
Hu
, and
M.
Li
, “
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
,”
Nat. Commun.
11
,
2338
(
2020
).
43.
J.
Hu
,
X.
Li
,
G.
Hu
,
Y.
Lyu
,
K.
Susztak
, and
M.
Li
, “
Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis
,”
Nat. Mach. Intell.
2
,
607
618
(
2020
).
44.
X.
Shao
,
H.
Yang
,
X.
Zhuang
,
J.
Liao
,
P.
Yang
,
J.
Cheng
,
X.
Lu
,
H.
Chen
, and
X.
Fan
, “
scDEEPSort: A pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network
,”
Nucl. Acids Res.
49
,
e122
(
2021
).
45.
F.
Ma
and
M.
Pellegrini
, “
ACTINN: Automated identification of cell types in single cell RNA sequencing
,”
Bioinformatics
36
,
533
538
(
2020
).
46.
A. A.
Heydari
,
O. A.
Davalos
,
L.
Zhao
,
K. K.
Hoyer
, and
S. S.
Sindi
, “
ACTIVA: Realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders
,”
Bioinformatics
38
,
2194
2201
(
2022
).
47.
M.
Marouf
,
P.
Machart
,
V.
Bansal
,
C.
Kilian
,
D. S.
Magruder
,
C. F.
Krebs
, and
S.
Bonn
, “
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
,”
Nat. Commun.
11
,
166
(
2020
).
48.
K.
Bayoudh
,
R.
Knani
,
F.
Hamdaoui
, and
A.
Mtibaa
, “
A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets
,”
Visual Comput.
38
,
2939
2970
(
2021
).
49.
D.
Butler
,
C.
Mozsary
,
C.
Meydan
,
J.
Foox
,
J.
Rosiene
,
A.
Shaiber
,
D.
Danko
,
E.
Afshinnekoo
,
M.
MacKay
,
F. J.
Sedlazeck
,
N. A.
Ivanov
,
M.
Sierra
,
D.
Pohle
,
M.
Zietz
,
U.
Gisladottir
,
V.
Ramlall
,
E. T.
Sholle
,
E. J.
Schenck
,
C. D.
Westover
,
C.
Hassan
,
K.
Ryon
,
B.
Young
,
C.
Bhattacharya
,
D. L.
Ng
,
A. C.
Granados
,
Y. A.
Santos
,
V.
Servellita
,
S.
Federman
,
P.
Ruggiero
,
A.
Fungtammasan
,
C.-S.
Chin
,
N. M.
Pearson
,
B. W.
Langhorst
,
N. A.
Tanner
,
Y.
Kim
,
J. W.
Reeves
,
T. D.
Hether
,
S. E.
Warren
,
M.
Bailey
,
J.
Gawrys
,
D.
Meleshko
,
D.
Xu
,
M.
Couto-Rodriguez
,
D.
Nagy-Szakal
,
J.
Barrows
,
H.
Wells
,
N. B.
O'Hara
,
J. A.
Rosenfeld
,
Y.
Chen
,
P. A. D.
Steel
,
A. J.
Shemesh
,
J.
Xiang
,
J.
Thierry-Mieg
,
D.
Thierry-Mieg
,
A.
Iftner
,
D.
Bezdan
,
E.
Sanchez
,
T. R.
Campion
,
J.
Sipley
,
L.
Cong
,
A.
Craney
,
P.
Velu
,
A. M.
Melnick
,
S.
Shapira
,
I.
Hajirasouliha
,
A.
Borczuk
,
T.
Iftner
,
M.
Salvatore
,
M.
Loda
,
L. F.
Westblade
,
M.
Cushing
,
S.
Wu
,
S.
Levy
,
C.
Chiu
,
R. E.
Schwartz
,
N.
Tatonetti
,
H.
Rennert
,
M.
Imielinski
, and
C. E.
Mason
, “
Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions
,”
Nat. Commun.
12
,
1660
(
2021
).
50.
T. M.
Delorey
,
C. G. K.
Ziegler
,
G.
Heimberg
,
R.
Normand
,
Y.
Yang
,
Å.
Segerstolpe
,
D.
Abbondanza
,
S. J.
Fleming
,
A.
Subramanian
,
D. T.
Montoro
,
K. A.
Jagadeesh
,
K. K.
Dey
,
P.
Sen
,
M.
Slyper
,
Y. H.
Pita-Juárez
,
D.
Phillips
,
J.
Biermann
,
Z.
Bloom-Ackermann
,
N.
Barkas
,
A.
Ganna
,
J.
Gomez
,
J. C.
Melms
,
I.
Katsyv
,
E.
Normandin
,
P.
Naderi
,
Y. V.
Popov
,
S. S.
Raju
,
S.
Niezen
,
L. T. Y.
Tsai
,
K. J.
Siddle
,
M.
Sud
,
V. M.
Tran
,
S. K.
Vellarikkal
,
Y.
Wang
,
L.
Amir-Zilberstein
,
D. S.
Atri
,
J.
Beechem
,
O. R.
Brook
,
J.
Chen
,
P.
Divakar
,
P.
Dorceus
,
J. M.
Engreitz
,
A.
Essene
,
D. M.
Fitzgerald
,
R.
Fropf
,
S.
Gazal
,
J.
Gould
,
J.
Grzyb
,
T.
Harvey
,
J.
Hecht
,
T.
Hether
,
J.
Jané-Valbuena
,
M.
Leney-Greene
,
H.
Ma
,
C.
McCabe
,
D. E.
McLoughlin
,
E. M.
Miller
,
C.
Muus
,
M.
Niemi
,
R.
Padera
,
L.
Pan
,
D.
Pant
,
C.
Pe'er
,
J.
Pfiffner-Borges
,
C. J.
Pinto
,
J.
Plaisted
,
J.
Reeves
,
M.
Ross
,
M.
Rudy
,
E. H.
Rueckert
,
M.
Siciliano
,
A.
Sturm
,
E.
Todres
,
A.
Waghray
,
S.
Warren
,
S.
Zhang
,
D. R.
Zollinger
,
L.
Cosimi
,
R. M.
Gupta
,
N.
Hacohen
,
H.
Hibshoosh
,
W.
Hide
,
A. L.
Price
,
J.
Rajagopal
,
P. R.
Tata
,
S.
Riedel
,
G.
Szabo
,
T. L.
Tickle
,
P. T.
Ellinor
,
D.
Hung
,
P. C.
Sabeti
,
R.
Novak
,
R.
Rogers
,
D. E.
Ingber
,
Z. G.
Jiang
,
D.
Juric
,
M.
Babadi
,
S. L.
Farhi
,
B.
Izar
,
J. R.
Stone
,
I. S.
Vlachos
,
I. H.
Solomon
,
O.
Ashenberg
,
C. B. M.
Porter
,
B.
Li
,
A. K.
Shalek
,
A.-C.
Villani
,
O.
Rozenblatt-Rosen
, and
A.
Regev
, “
COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets
,”
Nature
595
,
107
113
(
2021
).
51.
S.
Vickovic
,
D.
Schapiro
,
K.
Carlberg
,
B.
Lotstedt
,
L.
Larsson
, “
M.
Korotkova
,
A. H.
Hensvold
,
A. I.
Catrina
,
P. K.
Sorger
,
V.
Malmstrom
,
A.
Regev
, and
P. L.
Ståhl
,
Three-dimensional spatial transcriptomics uncovers cell type dynamics in the rheumatoid arthritis synovium
,”
bioRxiv
(
2020
).
52.
K.
Carlberg
,
M.
Korotkova
,
L.
Larsson
,
A. I.
Catrina
,
P. L.
Ståhl
, and
V.
Malmstrom
, “
Exploring inflammatory signatures in arthritic joint biopsies with spatial transcriptomics
,”
Sci. Rep.
9
,
18975
(
2019
).
53.
E.
Berglund
,
J.
Maaskola
,
N.
Schultz
,
S.
Friedrich
,
M.
Marklund
,
J.
Bergenstråhle
,
F.
Tarish
,
A.
Tanoglidi
,
S.
Vickovic
,
L.
Larsson
,
F.
Salmén
,
C.
Ogris
,
K.
Wallenborg
,
J.
Lagergren
,
P.
Ståhl
,
E.
Sonnhammer
,
T.
Helleday
, and
J.
Lundeberg
, “
Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
,”
Nat. Commun.
9
,
2419
(
2018
).
54.
R.
Moncada
,
D.
Barkley
,
F.
Wagner
,
M.
Chiodin
,
J. C.
Devlin
,
M.
Baron
,
C. H.
Hajdu
,
D. M.
Simeone
, and
I.
Yanai
, “
Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas
,”
Nat. Biotechnol.
38
,
333
342
(
2020
).
55.
A. L.
Ji
,
A. J.
Rubin
,
K.
Thrane
,
S.
Jiang
,
D. L.
Reynolds
,
R. M.
Meyers
,
M. G.
Guo
,
B. M.
George
,
A.
Mollbrink
,
J.
Bergenstråhle
,
L.
Larsson
,
Y.
Bai
,
B.
Zhu
,
A.
Bhaduri
,
J. M.
Meyers
,
X.
Rovira-Clavé
,
S. T.
Hollmig
,
S. Z.
Aasi
,
G. P.
Nolan
,
J.
Lundeberg
, and
P. A.
Khavari
, “
Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma
,”
Cell
182
,
497
514
(
2020
).
56.
W.-T.
Chen
,
A.
Lu
,
K.
Craessaerts
,
B.
Pavie
,
C.
Sala Frigerio
,
N.
Corthout
,
X.
Qian
,
J.
Laláková
,
M.
Kuhnemund
,
I.
Voytyuk
,
L.
Wolfs
,
R.
Mancuso
,
E.
Salta
,
S.
Balusu
,
A.
Snellinx
,
S.
Munck
,
A.
Jurek
,
J.
Fernandez Navarro
,
T. C.
Saido
,
I.
Huitinga
,
J.
Lundeberg
,
M.
Fiers
, and
B.
De Strooper
, “
Spatial transcriptomics and in situ sequencing to study alzheimer's disease
,”
Cell
182
,
976
991
(
2020
).
57.
J.
Backdahl
,
L.
Franzén
,
L.
Massier
,
Q.
Li
,
J.
Jalkanen
,
H.
Gao
,
A.
Andersson
,
N.
Bhalla
,
A.
Thorell
,
M.
Rydén
,
P. L.
Ståhl
, and
N.
Mejhert
, “
Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin
,”
Cell Metab.
33
,
1869
1882
(
2021
).
58.
G.
Theocharidis
,
B. E.
Thomas
,
D.
Sarkar
,
H. L.
Mumme
,
W. J. R.
Pilcher
,
B.
Dwivedi
,
T.
Sandoval-Schaefer
,
R. F.
Sîrbulescu
,
A.
Kafanas
,
I.
Mezghani
,
P.
Wang
,
A.
Lobao
,
I. S.
Vlachos
,
B.
Dash
,
H. C.
Hsia
,
V.
Horsley
,
S. S.
Bhasin
,
A.
Veves
, and
M.
Bhasin
, “
Single cell transcriptomic landscape of diabetic foot ulcers
,”
Nat. Commun.
13
,
181
(
2022
).
59.
R.
Satija
,
J. A.
Farrell
,
D.
Gennert
,
A. F.
Schier
, and
A.
Regev
, “
Spatial reconstruction of single-cell gene expression data
,”
Nat. Biotechnol.
33
,
495
502
(
2015
).
60.
M.
Nitzan
,
N.
Karaiskos
,
N.
Friedman
, and
N.
Rajewsky
, “
Gene expression cartography
,”
Nature
576
,
132
137
(
2019
).
61.
F.
Maseda
,
Z.
Cang
, and
Q.
Nie
, “
DEEPsc: A deep learning-based map connecting single-cell transcriptomics and spatial imaging data
,”
Front. Genet.
12
,
348
(
2021
).
62.
K.
Achim
,
J.-B.
Pettit
,
L. R.
Saraiva
,
D.
Gavriouchkina
,
T.
Larsson
,
D.
Arendt
, and
J. C.
Marioni
, “
High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
,”
Nat. Biotechnol.
33
,
503
509
(
2015
).
63.
T.
Peng
,
G. M.
Chen
, and
K.
Tan
, “
Gluer: Integrative analysis of single-cell omics and imaging data by deep neural network
,”
bioRxiv
(
2021
).
64.
A.
Andersson
,
J.
Bergenstråhle
,
M.
Asp
,
L.
Bergenstråhle
,
A.
Jurek
,
J. F.
Navarro
, and
J.
Lundeberg
, “
Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
,”
Commun. Biol.
3
,
565
(
2020
).
65.
Q.
Song
and
J.
Su
, “
DSTG: Deconvoluting spatial transcriptomics data through graph-based artificial intelligence
,”
Briefings Bioinf.
22
,
bbaa414
(
2021
).
66.
M.
Elosua-Bayes
,
P.
Nieto
,
E.
Mereu
,
I.
Gut
, and
H.
Heyn
, “
SPOTlight: Seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
,”
Nucl. Acids Res.
49
,
e50
(
2021
).
67.
D. M.
Cable
,
E.
Murray
,
L. S.
Zou
,
A.
Goeva
,
E. Z.
Macosko
,
F.
Chen
, and
R. A.
Irizarry
, “
Robust decomposition of cell type mixtures in spatial transcriptomics
,”
Nat. Biotechnol.
40
,
517
526
(
2021
).
68.
R.
Dong
and
G.-C.
Yuan
, “
SpatialDWLS: Accurate deconvolution of spatial transcriptomic data
,”
Genome Biol.
22
,
145
(
2021
).
69.
R.
Lopez
,
B.
Li
,
H.
Keren-Shaul
,
P.
Boyeau
,
M.
Kedmi
,
D.
Pilzer
,
A.
Jelinski
,
I.
Yofe
,
E.
David
,
A.
Wagner
,
C.
Ergen
,
Y.
Addadi
,
O.
Golani
,
F.
Ronchese
,
M. I.
Jordan
,
I.
Amit
, and
N.
Yosef
, “
Destvi identifies continuums of cell types in spatial transcriptomics data
,”
Nat. Biotechnol.
40
,
1360
1369
(
2022
).
70.
V.
Kleshchevnikov
,
A.
Shmatko
,
E.
Dann
,
A.
Aivazidis
,
H. W.
King
,
T.
Li
,
R.
Elmentaite
,
A.
Lomakin
,
V.
Kedlian
,
A.
Gayoso
,
M. S.
Jain
,
J. S.
Park
,
L.
Ramona
,
E.
Tuck
,
A.
Arutyunyan
,
R.
Vento-Tormo
,
M.
Gerstung
,
L.
James
,
O.
Stegle
, and
O. A.
Bayraktar
, “
Cell2location maps fine-grained cell types in spatial transcriptomics
,”
Nat. Biotechnol.
40
,
661
671
(
2022
).
71.
Y.
Ma
and
X.
Zhou
, “
Spatially informed cell-type deconvolution for spatial transcriptomics
,”
Nat. Biotechnol.
40
,
1349
1359
(
2022
).
72.
Q.
Zhu
,
S.
Shah
,
R.
Dries
,
L.
Cai
, and
G.-C.
Yuan
, “
Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data
,”
Nat. Biotechnol.
36
,
1183
1190
(
2018
).
73.
X.
Tan
,
A.
Su
,
M.
Tran
, and
Q.
Nguyen
, “
SpaCell: Integrating tissue morphology and spatial gene expression to predict disease cells
,”
Bioinformaics
36
,
2293
2294
(
2020
).
74.
D.
Pham
,
X.
Tan
,
J.
Xu
,
L. F.
Grice
,
P. Y.
Lam
, “
A.
Raghubar
,
J.
Vukovic
,
M. J.
Ruitenberg
, and
Q.
Nguyen
,
stLearn: Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues
,”
bioRxiv
(
2020
).
75.
E.
Zhao
,
M. R.
Stone
,
X.
Ren
,
J.
Guenthoer
,
K. S.
Smythe
,
T.
Pulliam
,
S. R.
Williams
,
C. R.
Uytingco
,
S. E. B.
Taylor
,
P.
Nghiem
,
J. H.
Bielas
, and
R.
Gottardo
, “
Spatial transcriptomics at subspot resolution with BayesSpace
,”
Nat. Biotechnol.
39
,
1375
1384
(
2021
).
76.
J.
Hu
,
X.
Li
,
K.
Coleman
,
A.
Schroeder
,
N.
Ma
,
D. J.
Irwin
,
E. B.
Lee
,
R. T.
Shinohara
, and
M.
Li
, “
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
,”
Nat. Methods
18
,
1342
1351
(
2021
).
77.
D.
Edsgard
,
P.
Johnsson
, and
R.
Sandberg
, “
Identification of spatial expression trends in single-cell gene expression data
,”
Nat. Methods
15
,
339
342
(
2018
).
78.
V.
Svensson
,
S. A.
Teichmann
, and
O.
Stegle
, “
Spatialde: Identification of spatially variable genes
,”
Nat. Methods
15
,
343
346
(
2018
).
79.
S.
Sun
,
J.
Zhu
, and
X.
Zhou
, “
Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies
,”
Nat. Methods
17
,
193
200
(
2020
).
80.
Z.
Cang
and
Q.
Nie
, “
Inferring spatial and signaling relationships between cells from single cell transcriptomic data
,”
Nat. Commun.
11
,
2084
(
2020
).
81.
J.
Tanevski
,
R. O. R.
Flores
,
A.
Gabor
,
D.
Schapiro
, and
J.
Saez-Rodriguez
, “
Explainable multi-view framework for dissecting intercellular signaling from highly multiplexed spatial data
,”
bioRxiv
(
2021
).
82.
R.
Dries
,
Q.
Zhu
,
R.
Dong
,
C.-H. L.
Eng
,
H.
Li
,
K.
Liu
,
Y.
Fu
,
T.
Zhao
,
A.
Sarkar
,
F.
Bao
,
R. E.
George
,
N.
Pierson
,
L.
Cai
, and
G.-C.
Yuan
, “
Giotto: A toolbox for integrative analysis and visualization of spatial expression data
,”
Genome Biol.
22
,
78
(
2021
).
83.
R. K.
Gupta
and
J.
Kuznicki
, “
Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing
,”
Cells
9
,
1751
(
2020
).
84.
P.
van Galen
,
V.
Hovestadt
,
M. H.
Wadsworth
 II
,
T. K.
Hughes
,
G. K.
Griffin
,
S.
Battaglia
,
J. A.
Verga
,
J.
Stephansky
,
T. J.
Pastika
,
J.
Lombardi Story
,
G. S.
Pinkus
,
O.
Pozdnyakova
,
I.
Galinsky
,
R. M.
Stone
,
T. A.
Graubert
,
A. K.
Shalek
,
J. C.
Aster
,
A. A.
Lane
, and
B. E.
Bernstein
, “
Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
,”
Cell
176
,
1265
1281
(
2019
).
85.
T.
Masuda
,
R.
Sankowski
,
O.
Staszewski
,
C.
Bottcher
,
L.
Amann
,
Sagar
,
C.
Scheiwe
,
S.
Nessler
,
P.
Kunz
,
G.
van Loo
,
V. A.
Coenen
,
P. C.
Reinacher
,
A.
Michel
,
U.
Sure
,
R.
Gold
,
D.
Grun
,
J.
Priller
,
C.
Stadelmann
, and
M.
Prinz
, “
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution
,”
Nature
566
,
388
392
(
2019
).
86.
J. M.
Churko
,
P.
Garg
,
B.
Treutlein
,
M.
Venkatasubramanian
,
H.
Wu
,
J.
Lee
,
Q. N.
Wessells
,
S.-Y.
Chen
,
W.-Y.
Chen
,
K.
Chetal
,
G.
Mantalas
,
N.
Neff
,
E.
Jabart
,
A.
Sharma
,
G. P.
Nolan
,
N.
Salomonis
, and
J. C.
Wu
, “
Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis
,”
Nat. Commun.
9
,
4906
(
2018
).
87.
A.
Gross
,
J.
Schoendube
,
S.
Zimmermann
,
M.
Steeb
,
R.
Zengerle
, and
P.
Koltay
, “
Technologies for single-cell isolation
,”
Int. J. Mol. Sci.
16
,
16897
16919
(
2015
).
88.
S.
Ma
,
T. W.
Murphy
, and
C.
Lu
, “
Microfluidics for genome-wide studies involving next generation sequencing
,”
Biomicrofluidics
11
,
021501
(
2017
).
89.
B.
Hwang
,
J. H.
Lee
, and
D.
Bang
, “
Single-cell RNA sequencing technologies and bioinformatics pipelines
,”
Exp. Mol. Med.
50
,
1
14
(
2018
).
90.
A.
Haque
,
J.
Engel
,
S. A.
Teichmann
, and
T.
Lonnberg
, “
A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
,”
Genome Med.
9
,
75
(
2017
).
91.
R.
Stark
,
M.
Grzelak
, and
J.
Hadfield
, “
RNA sequencing: The teenage years
,”
Nat. Rev. Genet.
20
,
631
656
(
2019
).
92.
E. L.
van Dijk
,
H.
Auger
,
Y.
Jaszczyszyn
, and
C.
Thermes
, “
Ten years of next-generation sequencing technology
,”
Trends Genet.
30
,
418
426
(
2014
).
93.
X.
Zhang
,
T.
Li
,
F.
Liu
,
Y.
Chen
,
J.
Yao
,
Z.
Li
,
Y.
Huang
, and
J.
Wang
, “
Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems
,”
Mol. Cell
73
,
130
142
(
2019
).
94.
A. A.
Kolodziejczyk
,
J. K.
Kim
,
V.
Svensson
,
J. C.
Marioni
, and
S. A.
Teichmann
, “
The technology and biology of single-cell RNA sequencing
,”
Mol. Cell
58
,
610
620
(
2015
).
95.
X.-T.
Huang
,
X.
Li
,
P.-Z.
Qin
,
Y.
Zhu
,
S.-N.
Xu
, and
J.-P.
Chen
, “
Technical advances in single-cell RNA sequencing and applications in normal and malignant hematopoiesis
,”
Front. Oncol.
8
,
582
(
2018
).
96.
M.
Asp
,
J.
Bergenstråhle
, and
J.
Lundeberg
, “
Spatially resolved transcriptomes—Next generation tools for tissue exploration
,”
BioEssays
42
,
1900221
(
2020
).
97.
L.
Moses
and
L.
Pachter
, “
Museum of spatial transcriptomics
,”
Nat. Methods
19
,
534
546
(
2022
).
98.
B. W.
Rautenstrauss
and
T.
Liehr
,
FISH Technology
(
Springer
Verlag, Berlin
,
2002
).
99.
E.
Jensen
, “
Technical review: In situ hybridization
,”
Anat. Rec.
297
,
1349
1353
(
2014
).
100.
M. M.
Hilscher
,
D.
Gyllborg
,
C.
Yokota
, and
M.
Nilsson
, “
In situ sequencing: A high-throughput, multi-targeted gene expression profiling technique for cell typing in tissue sections
,” in
In Situ Hybridization Protocols
, edited by
B. S.
Nielsen
and
J.
Jones
(
Springer
,
New York, NY
,
2020
), pp.
313
329
.
101.
J. A.
Weinstein
,
A.
Regev
, and
F.
Zhang
, “
Dna microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction
,”
Cell
178
,
229
241
(
2019
).
102.
C.
Larsson
,
I.
Grundberg
,
O.
Soderberg
, and
M.
Nilsson
, “
In situ detection and genotyping of individual mRNA molecules
,”
Nat. Methods
7
,
395
397
(
2010
).
103.
D.
Gyllborg
,
C. M.
Langseth
,
X.
Qian
,
E.
Choi
,
S. M.
Salas
,
M. M.
Hilscher
,
E. S.
Lein
, and
M.
Nilsson
, “
Hybridization-based in situ sequencing (HYBISS) for spatially resolved transcriptomics in human and mouse brain tissue
,”
Nucl. Acids Res.
48
,
e112
(
2020
).
104.
X.
Chen
,
Y.-C.
Sun
,
G. M.
Church
,
J. H.
Lee
, and
A. M.
Zador
, “
Efficient in situ barcode sequencing using padlock probe-based BaristaSeq
,”
Nucl. Acids Res.
46
,
e22
(
2017
).
105.
H.
Lee
,
S. M.
Salas
,
D.
Gyllborg
, and
M.
Nilsson
, “
Direct RNA targeted transcriptomic profiling in tissue using hybridization-based RNA in situ sequencing (HybRISS)
,”
bioRxiv
(
2020
).
106.
J. H.
Lee
,
E. R.
Daugharthy
,
J.
Scheiman
,
R.
Kalhor
,
T. C.
Ferrante
,
R.
Terry
,
B. M.
Turczyk
,
J. L.
Yang
,
H. S.
Lee
,
J.
Aach
,
K.
Zhang
, and
G. M.
Church
, “
Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues
,”
Nat. Protoc.
10
,
442
458
(
2015
).
107.
J. H.
Lee
, “
Quantitative approaches for investigating the spatial context of gene expression
,”
WIREs Syst. Biol. Med.
9
,
e1369
(
2017
).
108.
P. R.
Gudla
,
K.
Nakayama
,
G.
Pegoraro
, and
T.
Misteli
, “
Spotlearn: Convolutional neural network for detection of fluorescence in situ hybridization (fish) signals in high-throughput imaging approaches
,”
Cold Spring Harbor Symp. Quant. Biol.
82
,
57
70
(
2017
).
109.
G.
Partel
,
M. M.
Hilscher
,
G.
Milli
,
L.
Solorzano
,
A. H.
Klemm
,
M.
Nilsson
, and
C.
Wahlby
, “
Automated identification of the mouse brain's spatial compartments from in situ sequencing data
,”
BMC Biol.
18
,
144
(
2020
).
110.
E.
Pardo
,
J. M. T.
Morgado
, and
N.
Malpica
, “
Semantic segmentation of mFISH images using convolutional networks
,”
Cytometry, Part A
93
,
620
627
(
2018
).
111.
Z.
Frankenstein
,
N.
Uraoka
,
U.
Aypar
,
R.
Aryeequaye
,
M.
Rao
,
M.
Hameed
,
Y.
Zhang
, and
Y.
Yagi
, “
Automated 3d scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner
,”
Appl. Microsc.
51
,
4
(
2021
).
112.
R.
Littman
,
Z.
Hemminger
,
R.
Foreman
,
D.
Arneson
,
G.
Zhang
,
F.
Gómez-Pinilla
,
X.
Yang
, and
R.
Wollman
, “
Joint cell segmentation and cell type annotation for spatial transcriptomics
,”
Mol. Syst. Biol.
17
,
e10108
(
2021
).
113.
x.Genomics,
Visium Spatial Gene Expression Reagent Kits—User Guide
,
2021
.
114.
M. V.
Hunter
,
R.
Moncada
,
J. M.
Weiss
,
I.
Yanai
, and
R. M.
White
, “
Spatially resolved transcriptomics reveals the architecture of the tumor/microenvironment interface
,”
bioRxiv
(
2021
).
115.
D.
Fawkner-Corbett
,
A.
Antanaviciute
,
K.
Parikh
,
M.
Jagielowicz
,
A. S.
Gerós
,
T.
Gupta
,
N.
Ashley
,
D.
Khamis
,
D.
Fowler
,
E.
Morrissey
,
C.
Cunningham
,
P. R.
Johnson
,
H.
Koohy
, and
A.
Simmons
, “
Spatiotemporal analysis of human intestinal development at single-cell resolution
,”
Cell
184
,
810
826
(
2021
).
116.
M.
Asp
,
S.
Giacomello
,
L.
Larsson
,
C.
Wu
,
D.
Furth
,
X.
Qian
,
E.
Wardell
,
J.
Custodio
,
J.
Reimegård
,
F.
Salmén
,
C.
Osterholm
,
P. L.
Ståhl
,
E.
Sundstrom
,
E.
Åkesson
,
O.
Bergmann
,
M.
Bienko
,
A.
Månsson-Broberg
,
M.
Nilsson
,
C.
Sylvén
, and
J.
Lundeberg
, “
A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart
,”
Cell
179
,
1647
1660
(
2019
).
117.
M. Y.
Batiuk
,
T.
Tyler
,
S.
Mei
,
R.
Rydbirk
,
V.
Petukhov
,
D.
Sedmak
,
E.
Frank
,
V.
Feher
,
N.
Habek
,
Q.
Hu
,
A.
Igolkina
,
L.
Roszik
,
U.
Pfisterer
,
Z.
Petanjek
,
I.
Adorjan
,
P. V.
Kharchenko
, and
K.
Khodosevich
, “
Selective vulnerability of supragranular layer neurons in schizophrenia
,”
bioRxiv
(
2021
).
118.
C.
Ortiz
,
J. F.
Navarro
,
A.
Jurek
,
A.
Martin
,
J.
Lundeberg
, and
K.
Meletis
, “
Molecular atlas of the adult mouse brain
,”
Sci. Adv.
6
,
eabb3446
(
2020
).
119.
10x Genomics
, see https://www.10xgenomics.com/products/spatial-gene-expression for “
Spatial gene expression
,”
2022
.
120.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
The MIT Press
,
2016
).
121.
S.
Lloyd
, “
Least squares quantization in pcm
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
122.
L.
Prechelt
, “
Early stopping-but when?
,” in
Proceedings of the Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop
(
Springer-Verlag
,
Berlin, Heidelberg
,
1998
), pp.
55
69
.
123.
G.
Cybenko
, “
Approximation by superpositions of a sigmoidal function
,”
Math. Control Signals Syst.
2
,
303
314
(
1989
).
124.
F.
Scarselli
and
A.
Chung Tsoi
, “
Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
,”
Neural Networks
11
,
15
37
(
1998
).
125.
T.
Chen
and
H.
Chen
, “
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
,”
IEEE Trans. Neural Networks
6
,
911
917
(
1995
).
126.
M.
Uzair
and
N.
Jamil
, “
Effects of hidden layers on the efficiency of neural networks
,” in
Proceedings of the IEEE 23rd International Multitopic Conference (INMIC)
(
IEEE
,
2020
), pp.
1
6
.
127.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
ImageNet classification with deep convolutional neural networks
,” in
Advances in Neural Information Processing Systems
, edited by
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2012
), Vol.
25
.
128.
X.
Zhu
,
S.
Lyu
,
X.
Wang
, and
Q.
Zhao
, “
Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios
,” arXiv:2108.11539 [cs.CV] (
2021
).
129.
M.
Tan
and
Q. V.
Le
, “
Efficientnetv2: Smaller models and faster training
,” arXiv:2104.00298 [cs.CV] (
2021
).
130.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
L. u
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Advances in Neural Information Processing Systems
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc.
,
2017
), Vol.
30
.
131.
T. B.
Brown
,
B.
Mann
,
N.
Ryder
,
M.
Subbiah
,
J.
Kaplan
,
P.
Dhariwal
,
A.
Neelakantan
,
P.
Shyam
,
G.
Sastry
,
A.
Askell
,
S.
Agarwal
,
A.
Herbert-Voss
,
G.
Krueger
,
T.
Henighan
,
R.
Child
,
A.
Ramesh
,
D. M.
Ziegler
,
J.
Wu
,
C.
Winter
,
C.
Hesse
,
M.
Chen
,
E.
Sigler
,
M.
Litwin
,
S.
Gray
,
B.
Chess
,
J.
Clark
,
C.
Berner
,
S.
McCandlish
,
A.
Radford
,
I.
Sutskever
, and
D.
Amodei
, “
Language models are few-shot learners
,” arXiv:2005.14165 [cs.CL] (
2020
).
132.
J.
Devlin
,
M.
Chang
,
K.
Lee
, and
K.
Toutanova
, “
BERT: Pre-training of deep bidirectional transformers for language understanding
,” in
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
, Minneapolis, MN, 2–7 June 2019, edited by
J.
Burstein
,
C.
Doran
, and
T.
Solorio
(
Association for Computational Linguistics
,
2019
), Vol.
1
(Long and Short Papers), pp.
4171
4186
.
133.
R.
Poplin
,
P.-C.
Chang
,
D.
Alexander
,
S.
Schwartz
,
T.
Colthurst
,
A.
Ku
,
D.
Newburger
,
J.
Dijamco
,
N.
Nguyen
,
P. T.
Afshar
,
S. S.
Gross
,
L.
Dorfman
,
C. Y.
McLean
, and
M. A.
DePristo
, “
A universal SNP and small-indel variant caller using deep neural networks
,”
Nat. Biotechnol.
36
,
983
987
(
2018
).
134.
H.
Li
,
U.
Shaham
,
K. P.
Stanton
,
Y.
Yao
,
R. R.
Montgomery
, and
Y.
Kluger
, “
Gating mass cytometry data by deep learning
,”
Bioinformatics
33
,
3423
3430
(
2017
).
135.
J.
Jumper
,
R.
Evans
,
A.
Pritzel
,
T.
Green
,
M.
Figurnov
,
O.
Ronneberger
,
K.
Tunyasuvunakool
,
R.
Bates
,
A.
Žídek
,
A.
Potapenko
,
A.
Bridgland
,
C.
Meyer
,
S. A. A.
Kohl
,
A. J.
Ballard
,
A.
Cowie
,
B.
Romera-Paredes
,
S.
Nikolov
,
R.
Jain
,
J.
Adler
,
T.
Back
,
S.
Petersen
,
D.
Reiman
,
E.
Clancy
,
M.
Zielinski
,
M.
Steinegger
,
M.
Pacholska
,
T.
Berghammer
,
S.
Bodenstein
,
D.
Silver
,
O.
Vinyals
,
A. W.
Senior
,
K.
Kavukcuoglu
,
P.
Kohli
, and
D.
Hassabis
, “
Highly accurate protein structure prediction with alphafold
,”
Nature
596
,
583
589
(
2021
).
136.
T. N.
Kipf
and
M.
Welling
, “
Semi-supervised classification with graph convolutional networks
,” in
Proceedings of the 5th International Conference on Learning Representations (ICLR)
, Toulon, France, 24–26 April 2017 (
OpenReview.net
,
2017
).
137.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Networks
4
,
251
257
(
1991
).
138.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML)
(
Omnipress
,
Madison, WI
,
2010
), pp.
807
814
.
139.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer Science and Business Media
,
2006
).
140.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
, edited by
Y. W.
Teh
and
M.
Titterington
(
PMLR
,
Chia Laguna Resort, Sardinia, Italy
,
2010
), Vol.
9
, pp.
249
256
.
141.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Delving deep into rectifiers: Surpassing human-level performance on imageNet classification
,” in
Proceedings of the IEEE International Conference on Computer Vision (ICCV
) (
2015
).
142.
S.
Ruder
, “
An overview of gradient descent optimization algorithms
,” arXiv:1609.04747 (
2016
).
143.
S.
Smith
,
E.
Elsen
, and
S.
De
, “
On the generalization benefit of noise in stochastic gradient descent
,” in
Proceedings of the 37th International Conference on Machine Learning
, edited by
H.
De
 III
and
A.
Singh
(
PMLR
,
2020
), Vol.
119
, pp.
9058
9067
.
144.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
145.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
Proceedings of the 3rd International Conference on Learning Representations (ICLR)
, San Diego, CA, 7–9 May 2015, edited by
Y.
Bengio
and
Y.
LeCun
(
Conference Track Proceedings
,
2015
).
146.
J.
Duchi
,
E.
Hazan
, and
Y.
Singer
, “
Adaptive subgradient methods for online learning and stochastic optimization
,”
J. Mach. Learn. Res.
12
,
2121
2159
(
2011
), see https://jmlr.org/papers/v12/duchi11a.html
147.
Z.-Q.
Zhao
,
P.
Zheng
,
S.-T.
Xu
, and
X.
Wu
, “
Object detection with deep learning: A review
,”
IEEE Trans. Neural Networks Learn. Syst.
30
,
3212
3232
(
2019
).
148.
D.
Marr
and
E.
Hildreth
, “
Theory of edge detection
,”
Proc. R. Soc. London, Ser. B
207
,
187
217
(
1980
).
149.
Y.
LeCun
,
B.
Boser
,
J. S.
Denker
,
D.
Henderson
,
R. E.
Howard
,
W.
Hubbard
, and
L. D.
Jackel
, “
Backpropagation applied to handwritten zip code recognition
,”
Neural Comput.
1
,
541
551
(
1989
).
150.
Y.
LeCun
and
Y.
Bengio
, “
Convolutional networks for images, speech, and time series
,” in
The Handbook of Brain Theory and Neural Networks
(
MIT Press
,
Cambridge, MA
,
1998
), pp.
255
258
.
151.
Note that if the model chose a separate parameter for each x(i), for i=1,,n, then the model could not generalize to any inputs where |X|>n (size of X is greater than n).
152.
J. F.
Kolen
and
S. C.
Kremer
, “
Gradient flow in recurrent nets: The difficulty of learning longterm dependencies
,” in
A Field Guide to Dynamical Recurrent Networks
(
IEEE
,
2001
), pp.
237
243
.
153.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
154.
J. C.
Kimmel
,
A. S.
Brack
, and
W. F.
Marshall
, “
Deep convolutional and recurrent neural networks for cell motility discrimination and prediction
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
18
,
562
574
(
2021
).
155.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” in
Proceedings of the 32nd International Conference on Machine Learning
, edited by
F.
Bach
and
D.
Blei
(
PMLR
,
Lille, France
,
2015
), Vol.
37
, pp.
448
456
.
156.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2016
), pp.
770
778
.
157.
A.
Shah
,
E.
Kadam
,
H.
Shah
,
S.
Shinde
, and
S.
Shingade
, “
Deep residual networks with exponential linear unit
,” in
Proceedings of the Third International Symposium on Computer Vision and the Internet
(
Association for Computing Machinery
,
New York, NY
,
2016
), pp.
59
65
.
158.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.-J.
Li
,
K.
Li
, and
L.
Fei-Fei
, “
ImageNet: A large-scale hierarchical image database
,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition (
2009
) pp.
248
255
.
159.
D. H.
Ballard
, “
Modular learning in neural networks
,” in
Proceedings of the AAAI
(AAAI,
1987
), Vol.
1
, pp.
279
284
.
160.
G. E.
Hinton
, “
Connectionist learning procedures11 this chapter appeared in volume 40 of artificial intelligence in 1989, reprinted with permission of North-holland publishing. It is a revised version of technical report cmu-cs-87-115, which has the same title and was prepared in june 1987 while the author was at Carnegie Mellon University. the research was supported by contract n00014-86-k-00167 from the office of naval research and by grant ist-8520359 from the national science foundation
,” in
Machine Learning
, edited by
Y.
Kodratoff
and
R. S.
Michalski
(
Morgan Kaufmann
,
San Francisco, CA
,
1990
), Chap. 20, pp.
555
610
.
161.
D. P.
Kingma
and
M.
Welling
, “
Auto-encoding variational bayes
,” in
Proceedings of the International Conference on Learning Representations
(
2014
).
162.
I.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “
Generative adversarial nets
,” in
Advances in Neural Information Processing Systems
, edited by
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N.
Lawrence
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2014
), Vol.
27
.
163.
J.
He
,
D.
Spokoyny
,
G.
Neubig
, and
T.
Berg-Kirkpatrick
, “
Lagging inference networks and posterior collapse in variational autoencoders
,” in
Proceedings of the International Conference on Learning Representations
(
2019
).
164.
Z.
Yang
,
Z.
Hu
,
R.
Salakhutdinov
, and
T.
Berg-Kirkpatrick
, “
Improved variational autoencoders for text modeling using dilated convolutions
,” in
Proceedings of the International Conference on Machine Learning
(
PMLR
,
2017
), pp.
3881
3890
.
165.
A. A.
Heydari
and
A.
Mehmood
, “
SRVAE: Super resolution using variational autoencoders
,”
Proc. SPIE
11400
, 114000U (
2020
).
166.
S.
Semeniuta
,
A.
Severyn
, and
E.
Barth
, “
A hybrid convolutional variational autoencoder for text generation
,” in
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(
Association for Computational Linguistics
,
Copenhagen, Denmark
,
2017
), pp.
627
637
.
167.
A. A.
Heydari
,
C. A.
Thompson
, and
A.
Mehmood
, “
Softadapt: Techniques for adaptive loss weighting of neural networks with multi-part loss functions
,” arXiv:1912.12355 (
2019
).
168.
I.
Tolstikhin
,
O.
Bousquet
,
S.
Gelly
, and
B.
Schoelkopf
, “
Wasserstein auto-encoders
,” in
Proceedings of the International Conference on Learning Representations
(
2018
).
169.
T.
Daniel
and
A.
Tamar
, “
SoftIntroVAE: Analyzing and improving the introspective variational autoencoder
,” arXiv:2012.13253 [cs.LG] (
2021
).
170.
The astute reader will note that although Maseda et al. refer to DEEPsc as DL model, the methods's two-layer FFNN is not considered deep model in most definitions.
171.
K.
Nikos
,
W.
Philipp
,
A.
Jonathan
,
B.
Anastasiya
,
A.
Salah
,
K.
Claudia
,
K.
Christine
,
R.
Nikolaus
, and
R. P.
Zinzen
, “
The drosophila embryo at single-cell transcriptome resolution
,”
Science
358
,
194
199
(
2017
).
172.
B.
Tasic
,
V.
Menon
,
T. N.
Nguyen
,
T. K.
Kim
,
T.
Jarsky
,
Z.
Yao
,
B.
Levi
,
L. T.
Gray
,
S. A.
Sorensen
,
T.
Dolbeare
,
D.
Bertagnolli
,
J.
Goldy
,
N.
Shapovalova
,
S.
Parry
,
C.
Lee
,
K.
Smith
,
A.
Bernard
,
L.
Madisen
,
S. M.
Sunkin
,
M.
Hawrylycz
,
C.
Koch
, and
H.
Zeng
, “
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
,”
Nat. Neurosci.
19
,
335
346
(
2016
).
173.
S.
Joost
,
A.
Zeisel
,
T.
Jacob
,
X.
Sun
,
G. L.
Manno
,
P.
Lonnerberg
,
S.
Linnarsson
, and
M.
Kasper
, “
Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity
,”
Cell Syst.
3
,
221
237
(
2016
).
174.
Dropout refers to the scenario when a gene is observed at a moderate or high expression level in a subset of cells, but not detected in other cells.
175.
J.
Ding
,
X.
Adiconis
,
S. K.
Simmons
,
M. S.
Kowalczyk
,
C. C.
Hession
,
N. D.
Marjanovic
,
T. K.
Hughes
,
M. H.
Wadsworth
,
T.
Burks
,
L. T.
Nguyen
,
J. Y. H.
Kwon
,
B.
Barak
,
W.
Ge
,
A. J.
Kedaigle
,
S.
Carroll
,
S.
Li
,
N.
Hacohen
,
O.
Rozenblatt-Rosen
,
A. K.
Shalek
,
A.-C.
Villani
,
A.
Regev
, and
J. Z.
Levin
, “
Systematic comparison of single-cell and single-nucleus RNA-sequencing methods
,”
Nat. Biotechnol.
38
,
737
746
(
2020
).
176.
See https://pytorch.org/ for PyTorch is one of the most popular DL library in Python.
177.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
, “
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E. Z.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
,
Pytorch: An imperative style, high-performance deep learning library
,” arXiv:1912.01703 (
2019
).
178.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “
U-net: Convolutional networks for biomedical image segmentation
,” in
Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, edited by
N.
Navab
,
J.
Hornegger
,
W. M.
Wells
, and
A. F.
Frangi
(
Springer International Publishing
,
Cham
,
2015
), pp.
234
241
.
179.
G. R.
Koch
, “
Siamese neural networks for one-shot image recognition
,” in
Proceedings of the 32nd International Conference on Machine Learning
(
2015
).
180.
G.
Huang
,
Z.
Liu
,
L.
Van Der Maaten
, and
K. Q.
Weinberger
, “
Densely connected convolutional networks
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2017
), pp.
2261
2269
.
181.
Y.
Liu
,
M.
Yang
,
Y.
Deng
,
G.
Su
,
A.
Enninful
,
C. C.
Guo
,
T.
Tebaldi
,
D.
Zhang
,
D.
Kim
,
Z.
Bai
,
E.
Norris
,
A.
Pan
,
J.
Li
,
Y.
Xiao
,
S.
Halene
, and
R.
Fan
, “
High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue
,”
Cell
183
,
1665
1681
(
2020
).
182.
See https://www.nanostring.com/ for information on Nanostring’s GeoMx technology.
183.
J.
Hu
,
A.
Schroeder
,
K.
Coleman
,
C.
Chen
,
B. J.
Auerbach
, and
M.
Li
, “
Statistical and machine learning methods for spatially resolved transcriptomics with histology
,”
Comput. Struct. Biotechnol. J.
19
,
3829
3841
(
2021
).
184.
L.
Garcia-Alonso
,
L.-F.
Handfield
,
K.
Roberts
,
K.
Nikolakopoulou
,
R. C.
Fernando
, “
L.
Gardner
,
B.
Woodhams
,
A.
Arutyunyan
,
K.
Polanski
,
R.
Hoo
,
C.
Sancho-Serra
,
T.
Li
,
K.
Kwakwa
,
E.
Tuck
,
V.
Kleshchevnikov
,
A.
Tarkowska
,
T.
Porter
,
C. I.
Mazzeo
,
S.
van Dongen
,
M.
Dabrowska
,
V.
Vaskivskyi
,
K. T.
Mahbubani
,
J.-E.
Park
,
M.
Jimenez-Linan
,
L.
Campos
,
V.
Kiselev
,
C.
Lindskog
,
P.
Ayuk
,
E.
Prigmore
,
M. R.
Stratton
,
K.
Saeb-Parsy
,
A.
Moffett
,
L.
Moore
,
O. A.
Bayraktar
,
S. A.
Teichmann
,
M. Y.
Turco
, and
R.
Vento-Tormo
, “
Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro
,”
bioRxiv
(
2021
).
185.
R.
Lopez
,
J.
Regier
,
M. B.
Cole
,
M. I.
Jordan
, and
N.
Yosef
, “
Deep generative modeling for single-cell transcriptomics
,”
Nat. Methods
15
,
1053
1058
(
2018
).
186.
D.
Grun
,
L.
Kester
, and
A.
van Oudenaarden
, “
Validation of noise models for single-cell transcriptomics
,”
Nat. Methods
11
,
637
640
(
2014
).
187.
C. H.
Grønbech
,
M. F.
Vording
,
P. N.
Timshel
,
C. K.
Sønderby
,
T. H.
Pers
, and
O.
Winther
, “
scVAE: Variational auto-encoders for single-cell gene expression data
,”
Bioinformatics
36
,
4415
4422
(
2020
).
188.
J.
Aragón
,
D.
Eberly
, and
S.
Eberly
, “
Existence and uniqueness of the maximum likelihood estimator for the two-parameter negative binomial distribution
,”
Stat. Probab. Lett.
15
,
375
379
(
1992
).
189.
J. R.
Kettenring
, “
Canonical analysis of several sets of variables
,”
Biometrika
58
,
433
451
(
1971
).
190.
L.
Haghverdi
,
A. T. L.
Lun
,
M. D.
Morgan
, and
J. C.
Marioni
, “
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
,”
Nat. Biotechnol.
36
,
421
427
(
2018
).
191.
G.
Pasquini
,
J. E.
Rojo Arias
,
P.
Schafer
, and
V.
Busskamp
, “
Automated methods for cell type annotation on SCRNA-seq data
,”
Comput. Struct. Biotechnol. J.
19
,
961
969
(
2021
).
192.
V. D.
Blondel
,
J.-L.
Guillaume
,
R.
Lambiotte
, and
E.
Lefebvre
, “
Fast unfolding of communities in large networks
,”
J. Stat. Mech. Theory Exp.
2008
,
P10008
.
193.
V. A.
Traag
,
L.
Waltman
, and
N. J.
van Eck
, “
From Louvain to Leiden: Guaranteeing well-connected communities
,”
Sci. Rep.
9
,
5233
(
2019
).
194.
E. S.
Lein
,
M. J.
Hawrylycz
,
N.
Ao
,
M.
Ayres
,
A.
Bensinger
,
A.
Bernard
,
A. F.
Boe
,
M. S.
Boguski
,
K. S.
Brockway
,
E. J.
Byrnes
,
L.
Chen
,
L.
Chen
,
T.-M.
Chen
,
M.
Chi Chin
,
J.
Chong
,
B. E.
Crook
,
A.
Czaplinska
,
C. N.
Dang
,
S.
Datta
,
N. R.
Dee
,
A. L.
Desaki
,
T.
Desta
,
E.
Diep
,
T. A.
Dolbeare
,
M. J.
Donelan
,
H.-W.
Dong
,
J. G.
Dougherty
,
B. J.
Duncan
,
A. J.
Ebbert
,
G.
Eichele
,
L. K.
Estin
,
C.
Faber
,
B. A.
Facer
,
R.
Fields
,
S. R.
Fischer
,
T. P.
Fliss
,
C.
Frensley
,
S. N.
Gates
,
K. J.
Glattfelder
,
K. R.
Halverson
,
M. R.
Hart
,
J. G.
Hohmann
,
M. P.
Howell
,
D. P.
Jeung
,
R. A.
Johnson
,
P. T.
Karr
,
R.
Kawal
,
J. M.
Kidney
,
R. H.
Knapik
,
C. L.
Kuan
,
J. H.
Lake
,
A. R.
Laramee
,
K. D.
Larsen
,
C.
Lau
,
T. A.
Lemon
,
A. J.
Liang
,
Y.
Liu
,
L. T.
Luong
,
J.
Michaels
,
J. J.
Morgan
,
R. J.
Morgan
,
M. T.
Mortrud
,
N. F.
Mosqueda
,
L. L.
Ng
,
R.
Ng
,
G. J.
Orta
,
C. C.
Overly
,
T. H.
Pak
,
S. E.
Parry
,
S. D.
Pathak
,
O. C.
Pearson
,
R. B.
Puchalski
,
Z. L.
Riley
,
H. R.
Rockett
,
S. A.
Rowland
,
J. J.
Royall
,
M. J.
Ruiz
,
N. R.
Sarno
,
K.
Schaffnit
,
N. V.
Shapovalova
,
T.
Sivisay
,
C. R.
Slaughterbeck
,
S. C.
Smith
,
K. A.
Smith
,
B. I.
Smith
,
A. J.
Sodt
,
N. N.
Stewart
,
K.-R.
Stumpf
,
S. M.
Sunkin
,
M.
Sutram
,
A.
Tam
,
C. D.
Teemer
,
C.
Thaller
,
C. L.
Thompson
,
L. R.
Varnam
,
A.
Visel
,
R. M.
Whitlock
,
P. E.
Wohnoutka
,
C. K.
Wolkey
,
V. Y.
Wong
,
M.
Wood
,
M. B.
Yaylaoglu
,
R. C.
Young
,
B. L.
Youngstrom
,
X. F.
Yuan
,
B.
Zhang
,
T. A.
Zwingman
, and
A. R.
Jones
, “
Genome-wide atlas of gene expression in the adult mouse brain
,”
Nature
445
,
168
176
(
2007
).
195.
B.
Pardo
,
A.
Spangler
,
L. M.
Weber
,
S. C.
Page
,
S. C.
Hicks
,
A. E.
Jaffe
,
K.
Martinowich
,
K. R.
Maynard
, and
L.
Collado-Torres
, “
spatialLIBD: An R/bioconductor package to visualize spatially-resolved transcriptomics data
,”
BMC Genomics
23
,
434
(
2022
).
196.
K. R.
Maynard
,
L.
Collado-Torres
,
L. M.
Weber
,
C.
Uytingco
,
B. K.
Barry
,
S. R.
Williams
,
J. L.
Catallini
,
M. N.
Tran
,
Z.
Besich
,
M.
Tippani
,
J.
Chew
,
Y.
Yin
,
J. E.
Kleinman
,
T. M.
Hyde
,
N.
Rao
,
S. C.
Hicks
,
K.
Martinowich
, and
A. E.
Jaffe
, “
Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
,”
Nat. Neurosci.
24
,
425
436
(
2021
).
197.
P. J.
Rousseeuw
, “
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
,”
J. Comput. Appl. Math.
20
,
53
65
(
1987
).
198.
E.
Armingol
,
A.
Officer
,
O.
Harismendy
, and
N. E.
Lewis
, “
Deciphering cell–cell interactions and communication from gene expression
,”
Nat. Rev. Genet.
22
,
71
88
(
2021
).
199.
D.
Arneson
,
G.
Zhang
,
Z.
Ying
,
Y.
Zhuang
,
H. R.
Byun
,
I. S.
Ahn
,
F.
Gomez-Pinilla
, and
X.
Yang
, “
Single cell molecular alterations reveal target cells and pathways of concussive brain injury
,”
Nat. Commun.
9
,
3894
(
2018
).
200.
D. A.
Skelly
,
G. T.
Squiers
,
M. A.
McLellan
,
M. T.
Bolisetty
,
P.
Robson
,
N. A.
Rosenthal
, and
A. R.
Pinto
, “
Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart
,”
Cell Rep.
22
,
600
610
(
2018
).
201.
M.
Cohen
,
A.
Giladi
,
A.-D.
Gorki
,
D. G.
Solodkin
,
M.
Zada
,
A.
Hladik
,
A.
Miklosi
,
T.-M.
Salame
,
K. B.
Halpern
,
E.
David
,
S.
Itzkovitz
,
T.
Harkany
,
S.
Knapp
, and
I.
Amit
, “
Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting
,”
Cell
175
,
1031
1044
(
2018
).
202.
B.
He
,
L.
Bergenstråhle
,
L.
Stenbeck
,
A.
Abid
,
A.
Andersson
,
Å.
Borg
,
J.
Maaskola
,
J.
Lundeberg
, and
J.
Zou
, “
Integrating spatial gene expression and breast tumour morphology via deep learning
,”
Nat. Biomed. Eng.
4
,
827
834
(
2020
).
203.
M.
Efremova
,
M.
Vento-Tormo
,
S. A.
Teichmann
, and
R.
Vento-Tormo
, “
CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes
,”
Nat. Protoc.
15
,
1484
1506
(
2020
).
204.
S.
Cabello-Aguilar
,
M.
Alame
,
F.
Kon-Sun-Tack
,
C.
Fau
,
M.
Lacroix
, and
J.
Colinge
, “
SingleCellSignalR: Inference of intercellular networks from single-cell transcriptomics
,”
Nucl. Acids Res.
48
,
e55
(
2020
).
205.
E.
Stephenson
,
G.
Reynolds
,
R. A.
Botting
,
F. J.
Calero-Nieto
,
M. D.
Morgan
,
Z. K.
Tuong
,
K.
Bach
,
W.
Sungnak
,
K. B.
Worlock
,
M.
Yoshida
,
N.
Kumasaka
,
K.
Kania
,
J.
Engelbert
,
B.
Olabi
,
J. S.
Spegarova
,
N. K.
Wilson
,
N.
Mende
,
L.
Jardine
,
L. C. S.
Gardner
,
I.
Goh
,
D.
Horsfall
,
J.
McGrath
,
S.
Webb
,
M. W.
Mather
,
R. G. H.
Lindeboom
,
E.
Dann
,
N.
Huang
,
K.
Polanski
,
E.
Prigmore
,
F.
Gothe
,
J.
Scott
,
R. P.
Payne
,
K. F.
Baker
,
A. T.
Hanrath
,
I. C. D.
Schim van der Loeff
,
A. S.
Barr
,
A.
Sanchez-Gonzalez
,
L.
Bergamaschi
,
F.
Mescia
,
J. L.
Barnes
,
E.
Kilich
,
A.
de Wilton
,
A.
Saigal
,
A.
Saleh
,
S. M.
Janes
,
C. M.
Smith
,
N.
Gopee
,
C.
Wilson
,
P.
Coupland
,
J. M.
Coxhead
,
V. Y.
Kiselev
,
S.
van Dongen
,
J.
Bacardit
,
H. W.
King
,
S.
Baker
,
J. R.
Bradley
,
G.
Dougan
,
I. G.
Goodfellow
,
R. K.
Gupta
,
C.
Hess
,
N.
Kingston
,
P. J.
Lehner
,
N. J.
Matheson
,
W. H.
Owehand
,
C.
Saunders
,
K. G. C.
Smith
,
C.
Summers
,
J. E. D.
Thaventhiran
,
M.
Toshner
,
M. P.
Weekes
,
A.
Bucke
,
J.
Calder
,
L.
Canna
,
J.
Domingo
,
A.
Elmer
,
S.
Fuller
,
J.
Harris
,
S.
Hewitt
,
J.
Kennet
,
S.
Jose
,
J.
Kourampa
,
A.
Meadows
,
C.
O'Brien
,
J.
Price
,
C.
Publico
,
R.
Rastall
,
C.
Ribeiro
,
J.
Rowlands
,
V.
Ruffolo
,
H.
Tordesillas
,
B.
Bullman
,
B. J.
Dunmore
,
S.
Fawke
,
S.
Graf
,
J.
Hodgson
,
C.
Huang
,
K.
Hunter
,
E.
Jones
,
E.
Legchenko
,
C.
Matara
,
J.
Martin
,
C.
O'Donnell
,
L.
Pointon
,
N.
Pond
,
J.
Shih
,
R.
Sutcliffe
,
T.
Tilly
,
C.
Treacy
,
Z.
Tong
,
J.
Wood
,
M.
Wylot
,
A.
Betancourt
,
G.
Bower
,
A.
De Sa
,
M.
Epping
,
O.
Huhn
,
S.
Jackson
,
I.
Jarvis
,
J.
Marsden
,
F.
Nice
,
G.
Okecha
,
O.
Omarjee
,
M.
Perera
,
N.
Richoz
,
R.
Sharma
,
L.
Turner
,
E. M. D. D.
De Bie
,
K.
Bunclark
,
M.
Josipovic
,
M.
Mackay
,
A.
Michael
,
S.
Rossi
,
M.
Selvan
,
S.
Spencer
,
C.
Yong
,
A.
Ansaripour
,
L.
Mwaura
,
C.
Patterson
,
G.
Polwarth
,
P.
Polgarova
,
G. d
Stefano
,
J.
Allison
,
H.
Butcher
,
D.
Caputo
,
D.
Clapham-Riley
,
E.
Dewhurst
,
A.
Furlong
,
B.
Graves
,
J.
Gray
,
T.
Ivers
,
M.
Kasanicki
,
E. L.
Gresley
,
R.
Linger
,
S.
Meloy
,
F.
Muldoon
,
N.
Ovington
,
S.
Papadia
,
I.
Phelan
,
H.
Stark
,
K. E.
Stirrups
,
P.
Townsend
,
N.
Walker
,
J.
Webster
,
A. J.
Rostron
,
A. J.
Simpson
,
S.
Hambleton
,
E.
Laurenti
,
P. A.
Lyons
,
K. B.
Meyer
,
M. Z.
Nikolić
,
C. J. A.
Duncan
,
K. G. C.
Smith
,
S. A.
Teichmann
,
M. R.
Clatworthy
,
J. C.
Marioni
,
B.
Gottgens
,
M.
Haniffa
,
C. I. of Therapeutic Immunology, and I. D.-N. I. of Health Research (CITIID-NIHR) COVID-19 BioResource Collaboration,
Single-cell multi-omics analysis of the immune response in COVID-19
,”
Nat. Med.
27
,
904
916
(
2021
).
206.
J. P.
Bernardes
,
N.
Mishra
,
F.
Tran
,
T.
Bahmer
,
L.
Best
,
J. I.
Blase
,
D.
Bordoni
,
J.
Franzenburg
,
U.
Geisen
,
J.
Josephs-Spaulding
,
P.
Kohler
,
A.
Kunstner
,
E.
Rosati
,
A. C.
Aschenbrenner
,
P.
Bacher
,
N.
Baran
,
T.
Boysen
,
B.
Brandt
,
N.
Bruse
,
J.
Dorr
,
A.
Drager
,
G.
Elke
,
D.
Ellinghaus
,
J.
Fischer
,
M.
Forster
,
A.
Franke
,
S.
Franzenburg
,
N.
Frey
,
A.
Friedrichs
,
J.
Fuß
,
A.
Gluck
,
J.
Hamm
,
F.
Hinrichsen
,
M. P.
Hoeppner
,
S.
Imm
,
R.
Junker
,
S.
Kaiser
,
Y. H.
Kan
,
R.
Knoll
,
C.
Lange
,
G.
Laue
,
C.
Lier
,
M.
Lindner
,
G.
Marinos
,
R.
Markewitz
,
J.
Nattermann
,
R.
Noth
,
P.
Pickkers
,
K. F.
Rabe
,
A.
Renz
,
C.
Rocken
,
J.
Rupp
,
A.
Schaffarzyk
,
A.
Scheffold
,
J.
Schulte-Schrepping
,
D.
Schunk
,
D.
Skowasch
,
T.
Ulas
,
K.-P.
Wandinger
,
M.
Wittig
,
J.
Zimmermann
,
H.
Busch
,
B. F.
Hoyer
,
C.
Kaleta
,
J.
Heyckendorf
,
M.
Kox
,
J.
Rybniker
,
S.
Schreiber
,
J. L.
Schultze
, and
P.
Rosenstiel
, “
Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19
,”
Immunity
53
,
1296
1314
(
2020
).
207.
Z.
Zhang
,
K.
Huang
,
C.
Gu
,
L.
Zhao
,
N.
Wang
,
X.
Wang
,
D.
Zhao
,
C.
Zhang
,
Y.
Lu
, and
Y.
Meng
, “
Molecular subtyping of serous ovarian cancer based on multi-omics data
,”
Sci. Rep.
6
,
26001
(
2016
).
208.
J.
Lee
,
D. Y.
Hyeon
, and
D.
Hwang
, “
Single-cell multiomics: Technologies and data analysis methods
,”
Exp. Mol. Med.
52
,
1428
1442
(
2020
).
209.
J. D.
Welch
,
V.
Kozareva
,
A.
Ferreira
,
C.
Vanderburg
,
C.
Martin
, and
E. Z.
Macosko
, “
Single-cell multi-omic integration compares and contrasts features of brain cell identity
,”
Cell
177
,
1873
1887
(
2019
).
210.
S.
Maniatis
,
T.
Aijo
,
S.
Vickovic
,
C.
Braine
,
K.
Kang
,
A.
Mollbrink
,
D.
Fagegaltier
,
Ž.
Andrusivová
,
S.
Saarenpaa
,
G.
Saiz-Castro
,
M.
Cuevas
,
A.
Watters
,
J.
Lundeberg
,
R.
Bonneau
, and
H.
Phatnani
, “
Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis
,”
Science
364
,
89
93
(
2019
).
211.
S. Z.
Wu
,
G.
Al-Eryani
,
D. L.
Roden
,
S.
Junankar
,
K.
Harvey
,
A.
Andersson
,
A.
Thennavan
,
C.
Wang
,
J. R.
Torpy
,
N.
Bartonicek
,
T.
Wang
,
L.
Larsson
,
D.
Kaczorowski
,
N. I.
Weisenfeld
,
C. R.
Uytingco
,
J. G.
Chew
,
Z. W.
Bent
,
C.-L.
Chan
,
V.
Gnanasambandapillai
,
C.-A.
Dutertre
,
L.
Gluch
,
M. N.
Hui
,
J.
Beith
,
A.
Parker
,
E.
Robbins
,
D.
Segara
,
C.
Cooper
,
C.
Mak
,
B.
Chan
,
S.
Warrier
,
F.
Ginhoux
,
E.
Millar
,
J. E.
Powell
,
S. R.
Williams
,
X. S.
Liu
,
S.
O'Toole
,
E.
Lim
,
J.
Lundeberg
,
C. M.
Perou
, and
A.
Swarbrick
, “
A single-cell and spatially resolved atlas of human breast cancers
,”
Nat. Genet.
53
,
1334
1347
(
2021
).
212.
R. C. V.
Tyser
,
E.
Mahammadov
,
S.
Nakanoh
,
L.
Vallier
,
A.
Scialdone
, and
S.
Srinivas
, “
Single-cell transcriptomic characterization of a gastrulating human embryo
,”
Nature
600
,
285
289
(
2021
).
213.
M.
Zhang
,
S. W.
Eichhorn
,
B.
Zingg
,
Z.
Yao
,
K.
Cotter
,
H.
Zeng
,
H.
Dong
, and
X.
Zhuang
, “
Spatially resolved cell atlas of the mouse primary motor cortex by merfish
,”
Nature
598
,
137
143
(
2021
).
214.
See https://www.10xgenomics.com/products/spatial-gene-expression for the visuals on spatial transcriptomics.
215.
Z.
Mousavi
,
M.
Kourosh-Arami
,
M.
Mohsenzadegan
, and
A.
Komaki
, “
An immunohistochemical study of the effects of orexin receptor blockade on phospholipase c-b3 level in rat hippocampal dentate gyrus neurons
,”
Biotech. Histochem.
96
,
191
196
(
2021
).
216.
See https://biorender.com/ for accessing the mouse brain visual used in this manuscript.
You do not currently have access to this content.