The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.

1.
S.
Huang
,
G.
Eichler
,
Y.
Bar-Yam
, and
D. E.
Ingber
, “
Cell fates as high-dimensional attractor states of a complex gene regulatory network
,”
Phys. Rev. Lett.
94
,
128701
(
2005
).
2.
S.
Huang
,
I.
Ernberg
, and
S.
Kauffman
, “
Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective
,” in
Seminars in Cell and Developmental Biology
(
Elsevier
,
2009
), Vol.
20
, pp.
869
876
.
3.
N. D.
Heintzman
,
G. C.
Hon
,
R. D.
Hawkins
,
P.
Kheradpour
,
A.
Stark
,
L. F.
Harp
,
Z.
Ye
,
L. K.
Lee
,
R. K.
Stuart
,
C. W.
Ching
 et al, “
Histone modifications at human enhancers reflect global cell-type-specific gene expression
,”
Nature
459
,
108
112
(
2009
).
4.
R.
Stadhouders
,
G. J.
Filion
, and
T.
Graf
, “
Transcription factors and 3D genome conformation in cell-fate decisions
,”
Nature
569
,
345
354
(
2019
).
5.
H.
Zheng
and
W.
Xie
, “
The role of 3D genome organization in development and cell differentiation
,”
Nat. Rev. Mol. Cell Biol.
20
,
535
550
(
2019
).
6.
M. R.
Corces
and
V. G.
Corces
, “
The three-dimensional cancer genome
,”
Curr. Opin. Genet. Dev.
36
,
1
7
(
2016
).
7.
E.
Lieberman-Aiden
,
N. L.
Van Berkum
,
L.
Williams
,
M.
Imakaev
,
T.
Ragoczy
,
A.
Telling
,
I.
Amit
,
B. R.
Lajoie
,
P. J.
Sabo
,
M. O.
Dorschner
 et al, “
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
,”
Science
326
,
289
293
(
2009
).
8.
S. S.
Rao
,
M. H.
Huntley
,
N. C.
Durand
,
E. K.
Stamenova
,
I. D.
Bochkov
,
J. T.
Robinson
,
A. L.
Sanborn
,
I.
Machol
,
A. D.
Omer
,
E. S.
Lander
 et al, “
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
,”
Cell
159
,
1665
1680
(
2014
).
9.
J. R.
Dixon
,
S.
Selvaraj
,
F.
Yue
,
A.
Kim
,
Y.
Li
,
Y.
Shen
,
M.
Hu
,
J. S.
Liu
, and
B.
Ren
, “
Topological domains in mammalian genomes identified by analysis of chromatin interactions
,”
Nature
485
,
376
(
2012
).
10.
E. P.
Nora
,
B. R.
Lajoie
,
E. G.
Schulz
,
L.
Giorgetti
,
I.
Okamoto
,
N.
Servant
,
T.
Piolot
,
N. L.
van Berkum
,
J.
Meisig
,
J.
Sedat
 et al, “
Spatial partitioning of the regulatory landscape of the x-inactivation centre
,”
Nature
485
,
381
(
2012
).
11.
D. L.
Spector
, “
The dynamics of chromosome organization and gene regulation
,”
Annu. Rev. Biochem.
72
,
573
608
(
2003
).
12.
R.
Schneider
and
R.
Grosschedl
, “
Dynamics and interplay of nuclear architecture, genome organization, and gene expression
,”
Genes Dev.
21
,
3027
3043
(
2007
).
13.
A.
Smallwood
and
B.
Ren
, “
Genome organization and long-range regulation of gene expression by enhancers
,”
Curr. Opin. Cell Biol.
25
,
387
394
(
2013
).
14.
D. U.
Gorkin
,
D.
Leung
, and
B.
Ren
, “
The 3D genome in transcriptional regulation and pluripotency
,”
Cell Stem Cell
14
,
762
775
(
2014
).
15.
S.
Wang
,
J.-H.
Su
,
B. J.
Beliveau
,
B.
Bintu
,
J. R.
Moffitt
,
C-t
Wu
, and
X.
Zhuang
, “
Spatial organization of chromatin domains and compartments in single chromosomes
,”
Science
353
,
598
602
(
2016
).
16.
J. R.
Dixon
,
D. U.
Gorkin
, and
B.
Ren
, “
Chromatin domains: The unit of chromosome organization
,”
Mol. Cell
62
,
668
680
(
2016
).
17.
J.
Dekker
,
A. S.
Belmont
,
M.
Guttman
,
V. O.
Leshyk
,
J. T.
Lis
,
S.
Lomvardas
,
L. A.
Mirny
,
C. C.
O'shea
,
P. J.
Park
,
B.
Ren
 et al, “
The 4D nucleome project
,”
Nature
549
,
219
226
(
2017
).
18.
T.
Nagano
,
Y.
Lubling
,
C.
Várnai
,
C.
Dudley
,
W.
Leung
,
Y.
Baran
,
N. M.
Cohen
,
S.
Wingett
,
P.
Fraser
, and
A.
Tanay
, “
Cell-cycle dynamics of chromosomal organization at single-cell resolution
,”
Nature
547
,
61
(
2017
).
19.
J. H.
Gibcus
,
K.
Samejima
,
A.
Goloborodko
,
I.
Samejima
,
N.
Naumova
,
J.
Nuebler
,
M. T.
Kanemaki
,
L.
Xie
,
J. R.
Paulson
,
W. C.
Earnshaw
 et al, “
A pathway for mitotic chromosome formation
,”
Science
359
,
eaao6135
(
2018
).
20.
R.
Stadhouders
,
E.
Vidal
,
F.
Serra
,
B. D.
Stefano
,
F. L.
Dily
,
J.
Quilez
,
A.
Gomez
,
S.
Collombet
,
C.
Berenguer
,
Y.
Cuartero
 et al, “
Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming
,”
Nat. Genet.
50
,
238
249
(
2018
).
21.
A.
Bertero
,
P. A.
Fields
,
V.
Ramani
,
G.
Bonora
,
G. G.
Yardimci
,
H.
Reinecke
,
L.
Pabon
,
W. S.
Noble
,
J.
Shendure
, and
C. E.
Murry
, “
Dynamics of genome reorganization during human cardiogenesis reveal an rbm20-dependent splicing factory
,”
Nat. Commun.
10
,
1538
(
2019
).
22.
J. E.
Ferrell
and
E. M.
Machleder
, “
The biochemical basis of an all-or-none cell fate switch in xenopus oocytes
,”
Science
280
,
895
898
(
1998
).
23.
W.
Xiong
and
J. E.
Ferrell
, “
A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision
,”
Nature
426
,
460
465
(
2003
).
24.
X.
Fang
,
Q.
Liu
,
C.
Bohrer
,
Z.
Hensel
,
W.
Han
,
J.
Wang
, and
J.
Xiao
, “
Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch
,”
Nat. Commun.
9
,
2787
(
2018
).
25.
Z.
Jiang
,
L.
Tian
,
X.
Fang
,
K.
Zhang
,
Q.
Liu
,
Q.
Dong
,
E.
Wang
, and
J.
Wang
, “
The emergence of the two cell fates and their associated switching for a negative auto-regulating gene
,”
BMC Biol.
17
,
49
(
2019
).
26.
M. B.
Elowitz
,
A. J.
Levine
,
E. D.
Siggia
, and
P. S.
Swain
, “
Stochastic gene expression in a single cell
,”
Science
297
,
1183
1186
(
2002
).
27.
T.
Nagano
,
Y.
Lubling
,
T. J.
Stevens
,
S.
Schoenfelder
,
E.
Yaffe
,
W.
Dean
,
E. D.
Laue
,
A.
Tanay
, and
P.
Fraser
, “
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
,”
Nature
502
,
59
(
2013
).
28.
K.
Abramo
,
A.-L.
Valton
,
S. V.
Venev
,
H.
Ozadam
,
A. N.
Fox
, and
J.
Dekker
, “
A chromosome folding intermediate at the condensin-to-cohesin transition during telophase
,”
Nat. Cell Biol.
21
,
1393
1402
(
2019
).
29.
N. Q.
Liu
and
E.
de Wit
, “
A transient absence of SMC-mediated loops after mitosis
,”
Nat. Cell Biol.
21
,
1303
1304
(
2019
).
30.
X.
Chu
and
J.
Wang
, “
Conformational state switching and pathways of chromosome dynamics in cell cycle
,”
Appl. Phys. Rev.
7
,
031403
(
2020
).
31.
X.
Chu
and
J.
Wang
, “
Microscopic chromosomal structural and dynamical origin of cell differentiation and reprogramming
,”
Adv. Sci.
7
,
2001572
(
2020
).
32.
X.
Chu
and
J.
Wang
, “
Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics
,”
PLoS Comput. Biol.
17
,
e1009596
(
2021
).
33.
X.
Chu
and
J.
Wang
, “
Dynamics and pathways of chromosome structural organizations during cell transdifferentiation
,”
JACS Au
2
,
116
127
(
2021
).
34.
X.
Chu
and
J.
Wang
, “
Quantifying chromosome structural reorganizations during differentiation, reprogramming, and transdifferentiation
,”
Phys. Rev. Lett.
129
,
068102
(
2022
).
35.
B.
Zhang
and
P. G.
Wolynes
, “
Topology, structures, and energy landscapes of human chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6062
6067
(
2015
).
36.
B.
Zhang
and
P. G.
Wolynes
, “
Shape transitions and chiral symmetry breaking in the energy landscape of the mitotic chromosome
,”
Phys. Rev. Lett.
116
,
248101
(
2016
).
37.
X.
Lin
,
Y.
Qi
,
A. P.
Latham
, and
B.
Zhang
, “
Multiscale modeling of genome organization with maximum entropy optimization
,”
J. Chem. Phys.
155
,
010901
(
2021
).
38.
C. H.
Waddington
,
The Strategy of the Genes
(
Routledge
,
1957
).
39.
J.
Wang
,
K.
Zhang
,
L.
Xu
, and
E.
Wang
, “
Quantifying the Waddington landscape and biological paths for development and differentiation
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
8257
8262
(
2011
).
40.
M.
Sasai
and
P. G.
Wolynes
, “
Stochastic gene expression as a many-body problem
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
2374
2379
(
2003
).
41.
D.
Schultz
,
J. N.
Onuchic
, and
P. G.
Wolynes
, “
Understanding stochastic simulations of the smallest genetic networks
,”
J. Chem. Phys.
126
,
06B613
(
2007
).
42.
K.-Y.
Kim
and
J.
Wang
, “
Potential energy landscape and robustness of a gene regulatory network: Toggle switch
,”
PLoS Comput. Biol.
3
,
e60
(
2007
).
43.
H.
Feng
,
B.
Han
, and
J.
Wang
, “
Adiabatic and non-adiabatic non-equilibrium stochastic dynamics of single regulating genes
,”
J. Phys. Chem. B
115
,
1254
1261
(
2011
).
44.
M.
Sasai
,
Y.
Kawabata
,
K.
Makishi
,
K.
Itoh
, and
T. P.
Terada
, “
Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells
,”
PLoS Comput. Biol.
9
,
e1003380
(
2013
).
45.
S.
Ashwin
and
M.
Sasai
, “
Effects of collective histone state dynamics on epigenetic landscape and kinetics of cell reprogramming
,”
Sci. Rep.
5
,
16746
(
2015
).
46.
N.
Naumova
,
M.
Imakaev
,
G.
Fudenberg
,
Y.
Zhan
,
B. R.
Lajoie
,
L. A.
Mirny
, and
J.
Dekker
, “
Organization of the mitotic chromosome
,”
Science
342
,
948
953
(
2013
).
47.
A.
Krakovsky
, “
Master equation for coarse-time macroscopic dynamics
,”
AIP Adv.
8
,
085301
(
2018
).
48.
L.
Xu
,
K.
Zhang
, and
J.
Wang
, “
Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation
,”
PLoS One
9
,
e105216
(
2014
).
49.
R.
Bargaje
,
K.
Trachana
,
M. N.
Shelton
,
C. S.
McGinnis
,
J. X.
Zhou
,
C.
Chadick
,
S.
Cook
,
C.
Cavanaugh
,
S.
Huang
, and
L.
Hood
, “
Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells
,”
Proc. Natl. Acad. Sci.
114
,
2271
2276
(
2017
).
50.
P. H. L.
Krijger
,
B.
Di Stefano
,
E.
de Wit
,
F.
Limone
,
C.
Van Oevelen
,
W.
De Laat
, and
T.
Graf
, “
Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming
,”
Cell Stem Cell
18
,
597
610
(
2016
).
51.
C. M.
Nefzger
,
F. J.
Rossello
,
J.
Chen
,
X.
Liu
,
A. S.
Knaupp
,
J.
Firas
,
J. M.
Paynter
,
J.
Pflueger
,
S.
Buckberry
,
S. M.
Lim
 et al, “
Cell type of origin dictates the route to pluripotency
,”
Cell Rep.
21
,
2649
2660
(
2017
).
52.
X.
Fang
and
J.
Wang
, “
Nonequilibrium thermodynamics in cell biology: Extending equilibrium formalism to cover living systems
,”
Annu. Rev. Biophys.
49
,
227
246
(
2020
).
53.
E. P.
Consortium
 et al, “
An integrated encyclopedia of DNA elements in the human genome
,”
Nature
489
,
57
74
(
2012
).
54.
N.
Servant
,
N.
Varoquaux
,
B. R.
Lajoie
,
E.
Viara
,
C.-J.
Chen
,
J.-P.
Vert
,
E.
Heard
,
J.
Dekker
, and
E.
Barillot
, “
Hic-pro: An optimized and flexible pipeline for Hi-C data processing
,”
Genome Biol.
16
,
259
(
2015
).
55.
M.
Imakaev
,
G.
Fudenberg
,
R. P.
McCord
,
N.
Naumova
,
A.
Goloborodko
,
B. R.
Lajoie
,
J.
Dekker
, and
L. A.
Mirny
, “
Iterative correction of Hi-C data reveals hallmarks of chromosome organization
,”
Nat. Methods
9
,
999
(
2012
).
56.
Y.
Qi
and
B.
Zhang
, “
Predicting three-dimensional genome organization with chromatin states
,”
PLoS Comput. Biol.
15
,
e1007024
(
2019
).
57.
Y.
Qi
,
A.
Reyes
,
S. E.
Johnstone
,
M. J.
Aryee
,
B. E.
Bernstein
, and
B.
Zhang
, “
Data-driven polymer model for mechanistic exploration of diploid genome organization
,”
Biophys. J.
119
,
1905
1916
(
2020
).
58.
J. R.
Dixon
,
I.
Jung
,
S.
Selvaraj
,
Y.
Shen
,
J. E.
Antosiewicz-Bourget
,
A. Y.
Lee
,
Z.
Ye
,
A.
Kim
,
N.
Rajagopal
,
W.
Xie
 et al, “
Chromatin architecture reorganization during stem cell differentiation
,”
Nature
518
,
331
(
2015
).
59.
A. M.
D'Ippolito
,
I. C.
McDowell
,
A.
Barrera
,
L. K.
Hong
,
S. M.
Leichter
,
L. C.
Bartelt
,
C. M.
Vockley
,
W. H.
Majoros
,
A.
Safi
,
L.
Song
 et al, “
Pre-established chromatin interactions mediate the genomic response to glucocorticoids
,”
Cell Syst.
7
,
146
160
(
2018
).
60.
H. R.
Warner
, Jr.
, “
Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells
,”
Ind. Eng. Chem. Fundam.
11
,
379
387
(
1972
).
61.
N.
Tokuda
,
T. P.
Terada
, and
M.
Sasai
, “
Dynamical modeling of three-dimensional genome organization in interphase budding yeast
,”
Biophys. J.
102
,
296
304
(
2012
).
62.
A.
Rosa
and
R.
Everaers
, “
Structure and dynamics of interphase chromosomes
,”
PLoS Comput. Biol.
4
,
e1000153
(
2008
).
63.
J. C.
Wang
, “
Recent studies of DNA topoisomerases
,”
Biochim. Biophys. Acta, Gene Struct. Expression
909
,
1
9
(
1987
).
64.
A.
Cesari
,
S.
Reißer
, and
G.
Bussi
, “
Using the maximum entropy principle to combine simulations and solution experiments
,”
Computation
6
,
15
(
2018
).
65.
H. H.
Chang
,
M.
Hemberg
,
M.
Barahona
,
D. E.
Ingber
, and
S.
Huang
, “
Transcriptome-wide noise controls lineage choice in mammalian progenitor cells
,”
Nature
453
,
544
547
(
2008
).
66.
K.
Zhang
,
M.
Sasai
, and
J.
Wang
, “
Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
14930
14935
(
2013
).
67.
J.
Wang
, “
Landscape and flux theory of non-equilibrium dynamical systems with application to biology
,”
Adv. Phys.
64
,
1
137
(
2015
).
68.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
2287
(
2020
).
69.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
70.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
Plumed 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
71.
J.-H.
Su
,
P.
Zheng
,
S. S.
Kinrot
,
B.
Bintu
, and
X.
Zhuang
, “
Genome-scale imaging of the 3D organization and transcriptional activity of chromatin
,”
Cell
182
,
1641
1659
(
2020
).
72.
J. T.
Finch
and
A.
Klug
, “
Solenoidal model for superstructure in chromatin
,”
Proc. Natl. Acad. Sci. U. S. A.
73
,
1897
1901
(
1976
).
73.
K.
Bystricky
,
P.
Heun
,
L.
Gehlen
,
J.
Langowski
, and
S. M.
Gasser
, “
Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques
,”
Proc. Natl. Acad. Sci.
101
,
16495
16500
(
2004
).
74.
S.
Shinkai
,
T.
Nozaki
,
K.
Maeshima
, and
Y.
Togashi
, “
Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells
,”
PLoS Comput. Biol.
12
,
e1005136
(
2016
).
75.
L.
Liu
,
G.
Shi
,
D.
Thirumalai
, and
C.
Hyeon
, “
Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci
,”
PLoS Comput. Biol.
14
,
e1006617
(
2018
).
76.
R. I.
Dima
and
D.
Thirumalai
, “
Asymmetry in the shapes of folded and denatured states of proteins
,”
J. Phys. Chem. B
108
,
6564
6570
(
2004
).
77.
E.
Crane
,
Q.
Bian
,
R. P.
McCord
,
B. R.
Lajoie
,
B. S.
Wheeler
,
E. J.
Ralston
,
S.
Uzawa
,
J.
Dekker
, and
B. J.
Meyer
, “
Condensin-driven remodelling of x chromosome topology during dosage compensation
,”
Nature
523
,
240
(
2015
).
78.
T.
Cremer
and
C.
Cremer
, “
Chromosome territories, nuclear architecture and gene regulation in mammalian cells
,”
Nat. Rev. Genet.
2
,
292
301
(
2001
).
79.
G.
Gürsoy
,
Y.
Xu
,
A. L.
Kenter
, and
J.
Liang
, “
Spatial confinement is a major determinant of the folding landscape of human chromosomes
,”
Nucleic Acids Res.
42
,
8223
8230
(
2014
).
80.
M. D.
Pierro
,
B.
Zhang
,
E. L.
Aiden
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
Transferable model for chromosome architecture
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
12168
12173
(
2016
).
81.
M. D.
Pierro
,
R. R.
Cheng
,
E. L.
Aiden
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
12126
12131
(
2017
).
82.
M. D.
Pierro
,
D. A.
Potoyan
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7753
7758
(
2018
).
83.
J. R.
Dixon
,
J.
Xu
,
V.
Dileep
,
Y.
Zhan
,
F.
Song
,
V. T.
Le
,
G. G.
Yardimci
,
A.
Chakraborty
,
D. V.
Bann
,
Y.
Wang
 et al, “
Integrative detection and analysis of structural variation in cancer genomes
,”
Nat. Genet.
50
,
1388
(
2018
).
84.
A.
Chakraborty
and
F.
Ay
, “
Identification of copy number variations and translocations in cancer cells from Hi-C data
,”
Bioinformatics
34
,
338
345
(
2018
).
85.
D. G.
Albertson
,
C.
Collins
,
F.
McCormick
, and
J. W.
Gray
, “
Chromosome aberrations in solid tumors
,”
Nat. Genet.
34
,
369
376
(
2003
).
86.
S.
Wang
and
P. G.
Wolynes
, “
Communication: Effective temperature and glassy dynamics of active matter
,”
J. Chem. Phys.
135
,
051101
051101
(
2011
).
87.
S.
Wang
and
P.
Wolynes
, “
Tensegrity and motor-driven effective interactions in a model cytoskeleton
,”
J. Chem. Phys.
136
,
145102
(
2012
).
88.
B.
Zhang
and
P. G.
Wolynes
, “
Genomic energy landscapes
,”
Biophys. J.
112
,
427
433
(
2017
).
89.
N.
Stylianou
,
M. L.
Lehman
,
C.
Wang
,
A. T.
Fard
,
A.
Rockstroh
,
L.
Fazli
,
L.
Jovanovic
,
M.
Ward
,
M. C.
Sadowski
,
A. S.
Kashyap
 et al, “
A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome
,”
Oncogene
38
,
913
934
(
2019
).
90.
Y.
Katsuno
,
D. S.
Meyer
,
Z.
Zhang
,
K. M.
Shokat
,
R. J.
Akhurst
,
K.
Miyazono
, and
R.
Derynck
, “
Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition
,”
Sci. Signaling
12
,
eaau8544
(
2019
).
91.
D.
Jia
,
M. K.
Jolly
,
P.
Kulkarni
, and
H.
Levine
, “
Phenotypic plasticity and cell fate decisions in cancer: Insights from dynamical systems theory
,”
Cancers
9
,
70
(
2017
).
92.
W.
Jia
,
A.
Deshmukh
,
S. A.
Mani
,
M. K.
Jolly
, and
H.
Levine
, “
A possible role for epigenetic feedback regulation in the dynamics of the epithelial–mesenchymal transition (EMT)
,”
Phys. Biol.
16
,
066004
(
2019
).
93.
X.
Fang
,
K.
Kruse
,
T.
Lu
, and
J.
Wang
, “
Nonequilibrium physics in biology
,”
Rev. Mod. Phys.
91
,
045004
(
2019
).
94.
R. D.
Kornberg
and
Y.
Lorch
, “
Chromatin structure and transcription
,”
Annu. Rev. Cell Biol.
8
,
563
587
(
1992
).
95.
M.
Beato
and
K.
Eisfeld
, “
Transcription factor access to chromatin
,”
Nucleic Acids Res.
25
,
3559
3563
(
1997
).
96.
A.
Gaspar-Maia
,
A.
Alajem
,
E.
Meshorer
, and
M.
Ramalho-Santos
, “
Open chromatin in pluripotency and reprogramming
,”
Nat. Rev. Mol. Cell Biol.
12
,
36
47
(
2011
).
97.
K.
Ahmed
,
H.
Dehghani
,
P.
Rugg-Gunn
,
E.
Fussner
,
J.
Rossant
, and
D. P.
Bazett-Jones
, “
Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo
,”
PLoS One
5
,
e10531
(
2010
).
98.
S.
Efroni
,
R.
Duttagupta
,
J.
Cheng
,
H.
Dehghani
,
D. J.
Hoeppner
,
C.
Dash
,
D. P.
Bazett-Jones
,
S. L.
Grice
,
R. D.
McKay
,
K. H.
Buetow
 et al, “
Global transcription in pluripotent embryonic stem cells
,”
Cell Stem Cell
2
,
437
447
(
2008
).
99.
I.
Hiratani
,
T.
Ryba
,
M.
Itoh
,
J.
Rathjen
,
M.
Kulik
,
B.
Papp
,
E.
Fussner
,
D. P.
Bazett-Jones
,
K.
Plath
,
S.
Dalton
 et al, “
Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
,”
Genome Res.
20
,
155
169
(
2010
).
100.
J.
Xu
,
H.
Ma
,
H.
Ma
,
W.
Jiang
,
C. A.
Mela
,
M.
Duan
,
S.
Zhao
,
C.
Gao
,
E.-R.
Hahm
,
S. M.
Lardo
 et al, “
Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis
,”
Nat. Commun.
11
,
1899
(
2020
).
101.
M. A.
Ricci
,
C.
Manzo
,
M. F.
García-Parajo
,
M.
Lakadamyali
, and
M. P.
Cosma
, “
Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo
,”
Cell
160
,
1145
1158
(
2015
).
102.
A. P.
Feinberg
,
M. A.
Koldobskiy
, and
A.
Göndör
, “
Epigenetic modulators, modifiers and mediators in cancer aetiology and progression
,”
Nat. Rev. Genet.
17
,
284
299
(
2016
).
103.
M. V.
Rudan
,
C.
Barrington
,
S.
Henderson
,
C.
Ernst
,
D. T.
Odom
,
A.
Tanay
, and
S.
Hadjur
, “
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
,”
Cell Rep.
10
,
1297
1309
(
2015
).
104.
S. S.
Rao
,
S.-C.
Huang
,
B. G.
St Hilaire
,
J. M.
Engreitz
,
E. M.
Perez
,
K.-R.
Kieffer-Kwon
,
A. L.
Sanborn
,
S. E.
Johnstone
,
G. D.
Bascom
,
I. D.
Bochkov
 et al, “
Cohesin loss eliminates all loop domains
,”
Cell
171
,
305
320
(
2017
).
105.
E. P.
Nora
,
A.
Goloborodko
,
A.-L.
Valton
,
J. H.
Gibcus
,
A.
Uebersohn
,
N.
Abdennur
,
J.
Dekker
,
L. A.
Mirny
, and
B. G.
Bruneau
, “
Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization
,”
Cell
169
,
930
944
(
2017
).
106.
W. A.
Bickmore
, “
The spatial organization of the human genome
,”
Annu. Rev. Genomics Human Genet.
14
,
67
84
(
2013
).
107.
M.
Falk
,
Y.
Feodorova
,
N.
Naumova
,
M.
Imakaev
,
B. R.
Lajoie
,
H.
Leonhardt
,
B.
Joffe
,
J.
Dekker
,
G.
Fudenberg
,
I.
Solovei
 et al, “
Heterochromatin drives compartmentalization of inverted and conventional nuclei
,”
Nature
570
,
395
399
(
2019
).
108.
E.
Fussner
,
U.
Djuric
,
M.
Strauss
,
A.
Hotta
,
C.
Perez-Iratxeta
,
F.
Lanner
,
F. J.
Dilworth
,
J.
Ellis
, and
D. P.
Bazett-Jones
, “
Constitutive heterochromatin reorganization during somatic cell reprogramming
,”
EMBO J.
30
,
1778
1789
(
2011
).
109.
M. R.
Hübner
and
D. L.
Spector
, “
Chromatin dynamics
,”
Annu. Rev. Biophys.
39
,
471
489
(
2010
).
110.
K.
Takahashi
and
S.
Yamanaka
, “
A developmental framework for induced pluripotency
,”
Development
142
,
3274
3285
(
2015
).
111.
H.
Miura
,
S.
Takahashi
,
R.
Poonperm
,
A.
Tanigawa
,
S.-I.
Takebayashi
, and
I.
Hiratani
, “
Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization
,”
Nat. Genet.
51
,
1356
1368
(
2019
).
112.
A.
Kurz
,
S.
Lampel
,
J. E.
Nickolenko
,
J.
Bradl
,
A.
Benner
,
R. M.
Zirbel
,
T.
Cremer
, and
P.
Lichter
, “
Active and inactive genes localize preferentially in the periphery of chromosome territories
,”
J. Cell Biol.
135
,
1195
1205
(
1996
).
113.
S.
Shinkai
,
M.
Nakagawa
,
T.
Sugawara
,
Y.
Togashi
,
H.
Ochiai
,
R.
Nakato
,
Y.
Taniguchi
, and
S.
Onami
, “
PHi-C: Deciphering Hi-C data into polymer dynamics
,”
NAR Genomics Bioinf.
2
,
lqaa020
(
2020
).
114.
M. D.
Stefano
,
R.
Stadhouders
,
I.
Farabella
,
D.
Castillo
,
F.
Serra
,
T.
Graf
, and
M. A.
Marti-Renom
, “
Transcriptional activation during cell reprogramming correlates with the formation of 3D open chromatin hubs
,”
Nat. Commun.
11
,
2564
(
2020
).
115.
L. A.
Mirny
, “
The fractal globule as a model of chromatin architecture in the cell
,”
Chromosome Res.
19
,
37
51
(
2011
).
116.
M.
Barbieri
,
M.
Chotalia
,
J.
Fraser
,
L.-M.
Lavitas
,
J.
Dostie
,
A.
Pombo
, and
M.
Nicodemi
, “
Complexity of chromatin folding is captured by the strings and binders switch model
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16173
16178
(
2012
).
117.
F.
Benedetti
,
J.
Dorier
,
Y.
Burnier
, and
A.
Stasiak
, “
Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes
,”
Nucl. Acids Res.
42
,
2848
2855
(
2014
).
118.
G.
Fudenberg
,
M.
Imakaev
,
C.
Lu
,
A.
Goloborodko
,
N.
Abdennur
, and
L. A.
Mirny
, “
Formation of chromosomal domains by loop extrusion
,”
Cell Rep.
15
,
2038
2049
(
2016
).
119.
D.
Cacchiarelli
,
C.
Trapnell
,
M. J.
Ziller
,
M.
Soumillon
,
M.
Cesana
,
R.
Karnik
,
J.
Donaghey
,
Z. D.
Smith
,
S.
Ratanasirintrawoot
,
X.
Zhang
 et al, “
Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
,”
Cell
162
,
412
424
(
2015
).
120.
A. V.
Probst
and
G.
Almouzni
, “
Heterochromatin establishment in the context of genome-wide epigenetic reprogramming
,”
Trends Genet.
27
,
177
185
(
2011
).
121.
T.
Ishiuchi
,
R.
Enriquez-Gasca
,
E.
Mizutani
,
A.
Bošković
,
C.
Ziegler-Birling
,
D.
Rodriguez-Terrones
,
T.
Wakayama
,
J. M.
Vaquerizas
, and
M.-E.
Torres-Padilla
, “
Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly
,”
Nat. Struct. Mol. Biol.
22
,
662
671
(
2015
).
122.
M. A.
Eckersley-Maslin
,
V.
Svensson
,
C.
Krueger
,
T. M.
Stubbs
,
P.
Giehr
,
F.
Krueger
,
R. J.
Miragaia
,
C.
Kyriakopoulos
,
R. V.
Berrens
,
I.
Milagre
 et al, “
MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs
,”
Cell Rep.
17
,
179
192
(
2016
).
123.
Y.
Zhu
,
J.
Yu
,
J.
Gu
,
C.
Xue
,
L.
Zhang
,
J.
Chen
, and
L.
Shen
, “
Relaxed 3D genome conformation facilitates the pluripotent to totipotent-like state transition in embryonic stem cells
,”
Nucleic Acids Res.
49
,
12167
12177
(
2021
).
124.
C.
Yu
,
Q.
Liu
,
C.
Chen
, and
J.
Wang
, “
Quantification of the underlying mechanisms and relationships among cancer, metastasis, and differentiation and development
,”
Front. Genet.
10
,
1388
(
2020
).
125.
K.
Zhang
and
J.
Wang
, “
Exploring the underlying mechanisms of the coupling between cell differentiation and cell cycle
,”
J. Phys. Chem. B
123
,
3490
3498
(
2019
).
126.
H.
Miura
and
I.
Hiratani
, “Cell cycle dynamics developmental dynamics 3D genome: Toward linking two timescales,”
Curr. Opin. Genet. Dev.
73
,
101898
(
2022
).
127.
C. A.
Brackley
,
J.
Johnson
,
S.
Kelly
,
P. R.
Cook
, and
D.
Marenduzzo
, “
Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains
,”
Nucleic Acids Res.
44
,
3503
3512
(
2016
).
128.
C. A.
Brackey
,
D.
Marenduzzo
, and
N.
Gilbert
, “
Mechanistic modeling of chromatin folding to understand function
,”
Nat. Methods
17
,
767
775
(
2020
).

Supplementary Material

You do not currently have access to this content.