In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.

1.
M. A.
Laflamme
and
C. E.
Murry
, “
Regenerating the heart
,”
Nat. Biotechnol.
23
,
845
856
(
2005
).
2.
S. S.
Virani
 et al., “
Heart disease and stroke statistics—2021 Update
,”
Circulation
143
,
e254
(
2021
).
3.
M. K.
Chung
,
D. A.
Zidar
,
M. R.
Bristow
,
S. J.
Cameron
,
T.
Chan
,
C. V.
Harding
,
D. H.
Kwon
,
T.
Singh
,
J. C.
Tilton
,
E. J.
Tsai
,
N. R.
Tucker
,
J.
Barnard
, and
J.
Loscalzo
, “
COVID-19 and cardiovascular disease
,”
Circ. Res.
128
,
1214
1236
(
2021
).
4.
J. L.
Rodgers
,
J.
Jones
,
S. I.
Bolleddu
,
S.
Vanthenapalli
,
L. E.
Rodgers
,
K.
Shah
,
K.
Karia
, and
S. K.
Panguluri
, “
Cardiovascular risks associated with gender and aging
,”
J. Cardiovascu. Dev. Dis.
6
,
19
(
2019
).
5.
K.
Reddy
,
A.
Khaliq
, and
R. J.
Henning
, “
Recent advances in the diagnosis and treatment of acute myocardial infarction
,”
World J. Cardiol.
7
,
243
276
(
2015
).
6.
T.
Kalogeris
,
C. P.
Baines
,
M.
Krenz
, and
R. J.
Korthuis
, “
Cell biology of ischemia/reperfusion injury
,”
Int. Rev. Cell Mol. Biol.
298
,
229
(
2012
).
7.
D. J.
Hausenloy
,
J. A.
Barrabes
,
H. E.
Bøtker
,
S. M.
Davidson
,
F. D.
Lisa
,
J.
Downey
,
T.
Engstrom
,
P.
Ferdinandy
,
H. A.
Carbrera-Fuentes
,
G.
Heusch
,
B.
Ibanez
,
E. K.
Iliodromitis
,
J.
Inserte
,
R.
Jennings
,
N.
Kalia
,
R.
Kharbanda
,
S.
Lecour
,
M.
Marber
,
T.
Miura
,
M.
Ovize
,
M. A.
Perez-Pinzon
,
H. M.
Piper
,
K.
Przyklenk
,
M. R.
Schmidt
,
A.
Redington
,
M.
Ruiz-Meana
,
G.
Vilahur
,
J.
Vinten-Johansen
,
D. M.
Yellon
, and
D.
Garcia-Dorado
, “
Ischaemic conditioning and targeting reperfusion injury: A 30 year voyage of discovery
,”
Basic Res. Cardiol.
111
,
70
(
2016
).
8.
D. N.
Granger
and
P. R.
Kvietys
, “
Reperfusion injury and reactive oxygen species: The evolution of a concept
,”
Redox Biol.
6
,
524
551
(
2015
).
9.
S.
Kathiresan
and
D.
Srivastava
, “
Genetics of human cardiovascular disease
,”
Cell
148
,
1242
1257
(
2012
).
10.
B.
Lu
,
H.
Yu
,
M.
Zwartbol
,
W. P.
Ruifrok
,
W. H.
van Gilst
,
R. A.
de Boer
, and
H. H. W.
Silljé
, “
Identification of hypertrophy- and heart failure-associated genes by combining in vitro and in vivo models
,”
Physiol. Genomics
44
,
443
454
(
2012
).
11.
K.
Sarkar
,
Z.
Cai
,
R.
Gupta
,
N.
Parajuli
,
K.
Fox-Talbot
,
M. S.
Darshan
,
F. J.
Gonzalez
, and
G. L.
Semenza
, “
Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
10504
10509
(
2012
).
12.
M. F.
Tenreiro
,
A. F.
Louro
,
P. M.
Alves
, and
M.
Serra
, “
Next generation of heart regenerative therapies: Progress and promise of cardiac tissue engineering
,”
Npj Regener. Med.
6
,
30
(
2021
).
13.
A. K.
Singhal
,
J. D.
Abrams
,
J.
Mohara
,
R. D.
Hasz
,
H. M.
Nathan
,
C. A.
Fisher
,
S.
Furukawa
, and
B. I.
Goldman
, “
Potential suitability for transplantation of hearts from human non-heart-beating donors: Data review from the gift of life donor program
,”
J. Heart Lung Transplant
24
,
1657
1664
(
2005
).
14.
D. O.
Taylor
,
J.
Stehlik
,
L. B.
Edwards
,
P.
Aurora
,
J. D.
Christie
,
F.
Dobbels
,
R.
Kirk
,
A. Y.
Kucheryavaya
,
A. O.
Rahmel
, and
M. I.
Hertz
, “
Registry of the International Society for Heart and Lung Transplantation
:
Twenty-sixth official adult heart transplant report—2009,” J. Heart Lung Transplant
28
,
1007
1022
(
2009
).
15.
See http://www.organdonor.gov/statistics-stories/statistics.html for “
Organ Donation Statistics—Organ Donor
(accessed February 20,
2020
).
16.
C. M.
Leung
,
P.
de Haan
, and
K.
Ronaldson-Bouchard
et al., “
A guide to the organ-on-a-chip
,”
Nat. Rev. Methods Primers
2
,
33
(
2022
).
17.
Y. S.
Zhang
,
J.
Aleman
,
A.
Arneri
,
S.
Bersini
,
F.
Piraino
,
S. R.
Shin
,
M. R.
Dokmeci
, and
A.
Khademhosseini
, “
From cardiac tissue engineering to heart-on-a-chip: Beating challenges
,”
Biomed. Mater.
10
,
034006
(
2015
).
18.
J.
Ribas
,
H.
Sadeghi
,
A.
Manbachi
,
J.
Leijten
,
K.
Brinegar
,
Y. S.
Zhang
,
L.
Ferreira
, and
A.
Khademhosseini
, “
Cardiovascular organ-on-a-chip platforms for drug discovery and development
,”
Appl. Vitro Toxicol.
2
,
82
96
(
2016
).
19.
M.
Hay
,
D. W.
Thomas
,
J. L.
Craighead
,
C.
Economides
, and
J.
Rosenthal
, “
Clinical development success rates for investigational drugs
,”
Nat. Biotechnol.
32
,
40
(
2014
).
20.
P.
Perel
,
I.
Roberts
,
E.
Sena
,
P.
Wheble
,
C.
Briscoe
,
P.
Sandercock
,
M.
Macleod
,
L. E.
Mignini
,
P.
Jayaram
, and
K. S.
Khan
, “
Comparison of treatment effects between animal experiments and clinical trials: Systematic review
,”
BMJ
334
,
197
(
2007
).
21.
G.
Wang
,
M. L.
McCain
,
L.
Yang
,
A.
He
,
F. S.
Pasqualini
,
A.
Agarwal
,
H.
Yuan
,
D.
Jiang
,
D.
Zhang
,
L.
Zangi
,
J.
Geva
,
A. E.
Roberts
,
Q.
Ma
,
J.
Ding
,
J.
Chen
,
D.-Z.
Wang
,
K.
Li
,
J.
Wang
,
R. J. A.
Wanders
,
W.
Kulik
,
F. M.
Vaz
,
M. A.
Laflamme
,
C. E.
Murry
,
K. R.
Chien
,
R. I.
Kelley
,
G. M.
Church
,
K. K.
Parker
, and
W. T.
Pu
, “
Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies
,”
Nat. Med.
20
,
616
623
(
2014
).
22.
M.
Skolimowski
,
M. W.
Nielsen
,
F.
Abeille
,
P.
Skafte-Pedersen
,
D.
Sabourin
,
A.
Fercher
,
D.
Papkovsky
,
S.
Molin
,
R.
Taboryski
,
C.
Sternberg
,
M.
Dufva
,
O.
Geschke
, and
J.
Emnéus
, “
Modular microfluidic system as a model of cystic fibrosis airways
,”
Biomicrofluidics
6
,
034109
(
2012
).
23.
M. A.
Israel
,
S. H.
Yuan
,
C.
Bardy
,
S. M.
Reyna
,
Y.
Mu
,
C.
Herrera
,
M. P.
Hefferan
,
S.
Van Gorp
,
K. L.
Nazor
,
F. S.
Boscolo
,
C. T.
Carson
,
L. C.
Laurent
,
M.
Marsala
,
F. H.
Gage
,
A. M.
Remes
,
E. H.
Koo
, and
L. S. B.
Goldstein
, “
Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells
,”
Nature
482
,
216
220
(
2012
).
24.
B. W.
Ellis
,
A.
Acun
,
U. I.
Can
, and
P.
Zorlutuna
, “
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine
,”
Biomicrofluidics
11
,
024105
(
2017
).
25.
A.
Acun
and
P.
Zorlutuna
, “
Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress
,”
Acta Biomater.
58
,
323
336
(
2017
).
26.
S. N.
Bhatia
and
D. E.
Ingber
, “
Microfluidic organs-on-chips
,”
Nat. Biotechnol.
32
,
760
772
(
2014
).
27.
E.
Jastrzebska
,
E.
Tomecka
, and
I.
Jesion
, “
Heart-on-a-chip based on stem cell biology
,”
Biosens. Bioelectron.
75
,
67
81
(
2016
).
28.
Y. S.
Zhang
and
A.
Khademhosseini
, “
Seeking the right context for evaluating nanomedicine: From tissue models in petri dishes to microfluidic organs-on-a-chip
,”
Nanomedicine
10
,
685
688
(
2015
).
29.
C. S.
Simmons
,
B. C.
Petzold
, and
B. L.
Pruitt
, “
Microsystems for biomimetic stimulation of cardiac cells
,”
Lab Chip
12
,
3235
3248
(
2012
).
30.
H.
Yang
and
Z.
Ma
, “
Microsystem for stem cell-based cardiovascular research
,”
BioNanoSci.
2
,
305
315
(
2012
).
31.
G.
Basara
,
S. G.
Ozcebe
,
B. W.
Ellis
, and
P.
Zorlutuna
, “
Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering
,”
Gels
7
,
70
(
2021
).
32.
G. C.
Engelmayr
,
M.
Cheng
,
C. J.
Bettinger
,
J. T.
Borenstein
,
R.
Langer
, and
L. E.
Freed
, “
Accordion-like honeycombs for tissue engineering of cardiac anisotropy
,”
Nat. Mater.
7
,
1003
1010
(
2008
).
33.
D.
Kai
,
M. P.
Prabhakaran
,
G.
Jin
, and
S.
Ramakrishna
, “
Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering
,”
J. Biomed. Mater. Res. A
99
,
376
385
(
2011
).
34.
R. A.
Neal
,
A.
Jean
,
H.
Park
,
P. B.
Wu
,
J.
Hsiao
,
G. C.
Engelmayr
,
R.
Langer
, and
L. E.
Freed
, “
Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features
,”
Tissue Eng., Part A
19
,
793
807
(
2013
).
35.
A.
Agarwal
,
Y.
Farouz
,
A. P.
Nesmith
,
L. F.
Deravi
,
M. L.
McCain
, and
K. K.
Parker
, “
Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip
,”
Adv. Funct. Mater.
23
,
3738
3746
(
2013
).
36.
G.
Basara
,
M.
Saeidi-Javash
,
X.
Ren
,
G.
Bahcecioglu
,
B. C.
Wyatt
,
B.
Anasori
,
Y.
Zhang
, and
P.
Zorlutuna
, “
Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering
,”
Acta Biomater.
139
,
179
(
2022
).
37.
M.
Björnmalm
,
Y.
Yan
, and
F.
Caruso
, “
Engineering and evaluating drug delivery particles in microfluidic devices
,”
J. Controlled Release
190
,
139
149
(
2014
).
38.
J. Y.
Kim
,
Y.
Nam
,
Y. A.
Rim
, and
J. H.
Ju
, “
Review of the current trends in clinical trials involving induced pluripotent stem cells
,”
Stem Cell Rev. Rep.
18
,
142
154
(
2022
).
39.
C.
Tu
and
J.
Zoldan
, “
Moving iPSC-derived cardiomyocytes forward to treat myocardial infarction
,”
Cell Stem Cell
23
,
322
323
(
2018
).
40.
S.-J.
Park
,
R. Y.
Kim
,
B.-W.
Park
,
S.
Lee
,
S. W.
Choi
,
J.-H.
Park
,
J. J.
Choi
,
S.-W.
Kim
,
J.
Jang
,
D.-W.
Cho
,
H.-M.
Chung
,
S.-H.
Moon
,
K.
Ban
, and
H.-J.
Park
, “
Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction
,”
Nat. Commun.
10
,
3123
(
2019
).
41.
M.
Tiburcy
,
J. E.
Hudson
,
P.
Balfanz
,
S.
Schlick
,
T.
Meyer
,
M.-L. C.
Liao
,
E.
Levent
,
F.
Raad
,
S.
Zeidler
,
E.
Wingender
,
J.
Riegler
,
M.
Wang
,
J. D.
Gold
,
I.
Kehat
,
E.
Wettwer
,
U.
Ravens
,
P.
Dierickx
,
L. W.
van Laake
,
M. J.
Goumans
,
S.
Khadjeh
,
K.
Toischer
,
G.
Hasenfuss
,
L. A.
Couture
,
A.
Unger
,
W. A.
Linke
,
T.
Araki
,
B.
Neel
,
G.
Keller
,
L.
Gepstein
,
J. C.
Wu
, and
W.-H.
Zimmermann
, “
Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair
,”
Circulation
135
,
1832
1847
(
2017
).
42.
M. T.
Spang
and
K. L.
Christman
, “
Extracellular matrix hydrogel therapies: In vivo applications and development
,”
Acta Biomater.
68
,
1
14
(
2018
).
43.
X.
Mei
and
K.
Cheng
, “
Recent development in therapeutic cardiac patches
,”
Front. Cardiovasc. Med.
7
,
294
(
2020
).
44.
H.
Yamakawa
and
M.
Ieda
, “
Cardiac regeneration by direct reprogramming in this decade and beyond
,”
Inflammation Regener.
41
,
20
(
2021
).
45.
R. C.
de Abreu
,
H.
Fernandes
,
P. A.
da Costa Martins
,
S.
Sahoo
,
C.
Emanueli
, and
L.
Ferreira
, “
Native and engineered extracellular vesicles for cardiovascular therapeutics
,”
Nat. Rev. Cardiol.
17
,
685
697
(
2020
).
46.
S.
Firoozi
,
S.
Pahlavan
,
M.-H.
Ghanian
,
S.
Rabbani
,
M.
Barekat
,
A.
Nazari
,
M.
Pakzad
,
F.
Shekari
,
S.-N.
Hassani
,
F.
Moslem
,
F. N.
Lahrood
,
M.
Soleimani
, and
H.
Baharvand
, “
Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a SDKP-conjugated self-assembling peptide improve a rat model of myocardial infarction
,”
Biochem. Biophys. Res. Commun.
524
,
903
909
(
2020
).
47.
L.
Fields
,
T.
Ito
,
K.
Kobayashi
,
Y.
Ichihara
,
M.-N.
Podaru
,
M.
Hussain
,
K.
Yamashita
,
V.
Machado
,
F.
Lewis-McDougall
, and
K.
Suzuki
, “
Epicardial placement of human MSC-loaded fibrin sealant films for heart failure: Preclinical efficacy and mechanistic data
,”
Mol. Ther.
29
,
2554
2570
(
2021
).
48.
A. S.
Moghaddam
,
J. T.
Afshari
,
S.-A.
Esmaeili
,
E.
Saburi
,
Z.
Joneidi
, and
A. A.
Momtazi-Borojeni
, “
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease
,”
Atherosclerosis
285
,
1
9
(
2019
).
49.
Y.
Ozaki
,
Y.
Katagiri
,
Y.
Onuma
,
T.
Amano
,
T.
Muramatsu
,
K.
Kozuma
,
S.
Otsuji
,
T.
Ueno
,
N.
Shiode
,
K.
Kawai
,
N.
Tanaka
,
K.
Ueda
,
T.
Akasaka
,
K. I.
Hanaoka
,
S.
Uemura
,
H.
Oda
,
Y.
Katahira
,
K.
Kadota
,
E.
Kyo
,
K.
Sato
,
T.
Sato
,
J.
Shite
,
K.
Nakao
,
M.
Nishino
,
Y.
Hikichi
,
J.
Honye
,
T.
Matsubara
,
S.
Mizuno
,
T.
Muramatsu
,
T.
Inohara
,
S.
Kohsaka
,
I.
Michishita
,
H.
Yokoi
,
P. W.
Serruys
,
Y.
Ikari
, and
M.
Nakamura
, “
CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) in 2018
,”
Cardiovasc. Intervention Ther.
33
,
178
203
(
2018
).
50.
E.
Turillazzi
,
C.
Pomara
,
S.
Bello
,
M.
Neri
,
I.
Riezzo
, and
V.
Fineschi
, “
The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair
,”
Curr. Vasc. Pharmacol.
13
,
6
19
(
2015
).
51.
S.
Epelman
,
P. P.
Liu
, and
D. L.
Mann
, “
Role of innate and adaptive immune mechanisms in cardiac injury and repair
,”
Nat. Rev. Immunol.
15
(
15
),
117
129
(
2015
).
52.
Z.-X.
Fan
and
J.
Yang
, “
The role of microRNAs in regulating myocardial ischemia reperfusion injury
,”
Saudi Med. J.
36
,
787
793
(
2015
).
53.
R. A.
Boon
and
S.
Dimmeler
, “
MicroRNAs in myocardial infarction
,”
Nat. Rev. Cardiol.
12
,
198
(
2014
).
54.
R.
Gentek
and
G.
Hoeffel
, “
The innate immune response in myocardial infarction, repair, and regeneration
,”
Adv. Exp. Med. Biol.
1003
,
251
272
(
2017
).
55.
M. L.
Lindsey
,
R.
Bolli
,
J. M.
Canty
,
X.-J.
Du
,
N. G.
Frangogiannis
,
S.
Frantz
,
R. G.
Gourdie
,
J. W.
Holmes
,
S. P.
Jones
,
R. A.
Kloner
,
D. J.
Lefer
,
R.
Liao
,
E.
Murphy
,
P.
Ping
,
K.
Przyklenk
,
F. A.
Recchia
,
L. S.
Longacre
,
C. M.
Ripplinger
,
J. E. V.
Eyk
, and
G.
Heusch
, “
Guidelines for experimental models of myocardial ischemia and infarction
,”
Am. J. Physiol.: Heart Circ. Physiol.
314
,
H812
(
2018
).
56.
M.
Kumar
,
E. R.
Kasala
,
L. N.
Bodduluru
,
V.
Dahiya
,
D.
Sharma
,
V.
Kumar
, and
M.
Lahkar
, “
Animal models of myocardial infarction: Mainstay in clinical translation
,”
Regul. Toxicol. Pharmacol.
76
,
221
230
(
2016
).
57.
H. S.
Shin
,
H. H.
Shin
, and
Y.
Shudo
, “
Current status and limitations of myocardial infarction large animal models in cardiovascular translational research
,”
Front. Bioeng. Biotechnol.
9
,
673683
(
2021
).
58.
C. D.
Villiers
and
P. R.
Riley
, “
Mouse models of myocardial infarction: Comparing permanent ligation and ischaemia-reperfusion
,”
Dis. Model. Mech.
13
,
dmm046565
(
2020
).
59.
P.
Golforoush
,
D. M.
Yellon
, and
S. M.
Davidson
, “
Mouse models of atherosclerosis and their suitability for the study of myocardial infarction
,”
Basic Res. Cardiol.
115
,
73
(
2020
).
60.
K. S.
Kim
,
H. J.
Joo
,
S.-C.
Choi
,
J.-H.
Kim
,
C.-Y.
Park
,
M.-H.
Song
,
J.-M.
Noh
,
J.-J.
Cha
,
S. J.
Hong
,
T. H.
Ahn
,
M.-N.
Kim
,
J. E.
Na
,
I. J.
Rhyu
, and
D.-S.
Lim
, “
Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction
,”
Biofabrication
13
,
045014
(
2021
).
61.
G.
Srikanth
,
P.
Prakash
,
N.
Tripathy
,
M.
Dikshit
, and
S.
Nityanand
, “
Establishment of a rat model of myocardial infarction with a high survival rate: A suitable model for evaluation of efficacy of stem cell therapy
,”
J. Stem Cells Regener. Med.
5
,
30
36
(
2009
).
62.
Y.
Wu
,
X.
Yin
,
C.
Wijaya
,
M.-H.
Huang
, and
B. K.
McConnell
, “
Acute myocardial infarction in rats
,”
J. Vis. Exp.
48
,
2464
(
2011
).
63.
Z.
Huang
,
Y.
Shen
,
A.
Sun
,
G.
Huang
,
H.
Zhu
,
B.
Huang
,
J.
Xu
,
Y.
Song
,
N.
Pei
,
J.
Ma
,
X.
Yang
,
Y.
Zou
,
J.
Qian
, and
J.
Ge
, “
Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction
,”
Stem Cell Res. Ther.
4
,
149
(
2013
).
64.
M.-Y.
Tan
,
B.
Xia
,
Z.
Xiao
,
Z.-W.
Fan
,
H.
Zhou
,
X.
Guo
, and
Y.-C.
Huang
, “
Development of a new model for acute myocardial infarction in rabbits
,”
J. Vet. Med. Sci.
79
,
467
473
(
2017
).
65.
P. J.
Morrissey
,
K. R.
Murphy
,
J. M.
Daley
,
L.
Schofield
,
N. N.
Turan
,
K.
Arunachalam
,
J. D.
Abbott
, and
G.
Koren
, “
A novel method of standardized myocardial infarction in aged rabbits
,”
Am. J. Physiol.: Heart Circ. Physiol.
312
,
H959
H967
(
2017
).
66.
M.
Fujita
,
Y.
Morimoto
,
M.
Ishihara
,
M.
Shimizu
,
B.
Takase
,
T.
Maehara
, and
M.
Kikuchi
, “
A new rabbit model of myocardial infarction without endotracheal intubation
,”
J. Surg. Res.
116
,
124
128
(
2004
).
67.
F.
Wang
,
L.
Wen
,
J.
Liu
,
W.
Peng
,
Z.
Meng
,
Q.
Chen
,
Y.
Wang
,
B.
Ke
,
Y.
Guo
, and
P.
Mi
, “
Albumin nanocomposites with MnO2/Gd2O3 motifs for precise MR imaging of acute myocardial infarction in rabbit models
,”
Biomaterials
230
,
119614
(
2020
).
68.
G.
Wu
,
Z.
Du
,
C.
Hu
,
Z.
Zheng
,
C.
Zhan
,
H.
Ma
,
D.
Fang
,
K. T.
Ahmed
,
R. J.
Laham
,
J. C. K.
Hui
, and
W. E.
Lawson
, “
Angiogenic effects of long-term enhanced external counterpulsation in a dog model of myocardial infarction
,” Am. J. Physiol.: Heart Circ. Physiol.
290
,
H248
H254
(
2006
).
69.
H.
Zhang
,
Y.
Cui
,
Y.
Tian
,
W.
Yuan
,
J.
Yang
,
P.
Peng
,
K.
Li
,
X.
Liu
,
D.
Zhang
,
A.
Wu
,
Z.
Zhou
, and
Y.
Tang
, “
A novel model for evaluating thrombolytic therapy in dogs with ST-elevation myocardial infarction
,”
BMC Cardiovasc. Disord.
16
,
21
(
2016
).
70.
C. Y.
Guerrero-Miranda
and
S. A.
Hall
, “
Dog model holds promise for early mechanical unloading in patients with acute myocardial infarction
,”
Circ.: Heart Failure
11
,
e004972
(
2018
).
71.
S.
Rabbani
,
H.
Ahmadi
,
E.
Fayazzadeh
,
M.
Sahebjam
,
M. A.
Boroumand
,
M.
Sotudeh
, and
S. M.
Nassiri
, “
Development of an ovine model of myocardial infarction
,”
ANZ J. Surg.
78
,
78
81
(
2008
).
72.
M.
Rienzo
,
J.
Imbault
,
Y. E.
Boustani
,
A.
Beurton
,
C. C.
Sampedrano
,
P.
Pasdois
,
M.
Pernot
,
O.
Bernus
,
M.
Haïssaguerre
,
T.
Couffinhal
, and
A.
Ouattara
, “
A total closed chest sheep model of cardiogenic shock by percutaneous intracoronary ethanol injection
,”
Sci. Rep.
10
,
12417
(
2020
).
73.
M. C.
Lock
,
J. R. T.
Darby
,
J. Y.
Soo
,
D. A.
Brooks
,
S. R.
Perumal
,
J. B.
Selvanayagam
,
M.
Seed
,
C. K.
Macgowan
,
E. R.
Porrello
,
R. L.
Tellam
, and
J. L.
Morrison
, “
Differential response to injury in fetal and adolescent sheep hearts in the immediate post-myocardial infarction period
,”
Front. Physiol.
10
,
208
(
2019
).
74.
S.
Liu
,
K.
Li
,
L.
Wagner Florencio
,
L.
Tang
,
T. R.
Heallen
,
J. P.
Leach
,
Y.
Wang
,
F.
Grisanti
,
J. T.
Willerson
,
E. C.
Perin
,
S.
Zhang
, and
J. F.
Martin
, “
Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction
,”
Sci. Transl. Med.
13
,
eabd6892
(
2021
).
75.
O.
Bikou
,
S.
Watanabe
,
R. J.
Hajjar
, and
K.
Ishikawa
, “
A pig model of myocardial infarction: Catheter-based approaches
,” in
Experimental Models of Cardiovascular Diseases: Methods and Protocols
, edited by
K.
Ishikawa
(
Springer
,
New York, NY
,
2018
), pp.
281
294
.
76.
F. C.
McCall
,
K. S.
Telukuntla
,
V.
Karantalis
,
V. Y.
Suncion
,
A. W.
Heldman
,
M.
Mushtaq
,
A. R.
Williams
, and
J. M.
Hare
, “
Myocardial infarction and intramyocardial injection models in swine
,”
Nat. Protoc.
7
,
1479
1496
(
2012
).
77.
N.
Teramoto
,
K.
Koshino
,
I.
Yokoyama
,
S.
Miyagawa
,
T.
Zeniya
,
Y.
Hirano
,
H.
Fukuda
,
J.
Enmi
,
Y.
Sawa
,
J.
Knuuti
, and
H.
Iida
, “
Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET
,”
J. Nucl. Med.
52
,
761
768
(
2011
).
78.
Y.
Li
,
X.
Chen
,
R.
Jin
,
L.
Chen
,
M.
Dang
,
H.
Cao
,
Y.
Dong
,
B.
Cai
,
G.
Bai
,
J. J.
Gooding
,
S.
Liu
,
D.
Zou
,
Z.
Zhang
, and
C.
Yang
, “
Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs
,”
Sci. Adv.
7
,
eabd6740
(
2021
).
79.
A.
Hirano
,
J.
Fujita
,
H.
Kanazawa
,
S.
Kawaguchi
,
N.
Handa
,
Y.
Yamada
,
S.
Okuda
,
S.
Hishikawa
,
T.
Teratani
,
S.
Kunita
,
S.
Tohyama
,
T.
Seki
,
R.
Tabei
,
K.
Nakajima
,
Y.
Kishino
,
M.
Okada
,
K.
Okamoto
,
H.
Shimizu
,
E.
Kobayashi
, and
K.
Fukuda
, “
Cryoinjury-induced acute myocardial infarction model and ameroid constrictor-induced ischemic heart disease model in adult micro-mini pigs for preclinical studies
,”
Transl. Med. Commun.
2
,
1
(
2017
).
80.
A. A.
Sayour
,
C.
Celeng
,
A.
Oláh
,
M.
Ruppert
,
B.
Merkely
, and
T.
Radovits
, “
Sodium–glucose cotransporter 2 inhibitors reduce myocardial infarct size in preclinical animal models of myocardial ischaemia–reperfusion injury: A meta-analysis
,”
Diabetologia
64
,
737
748
(
2021
).
81.
L.
Raposo
,
A. P.
Lourenço
,
D. S.
Nascimento
,
R.
Cerqueira
,
N.
Cardim
, and
A.
Leite-Moreira
, “
Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: A review of current evidence focusing on pre-clinical large animal models and early human trials
,”
Cytotherapy
23
,
974
979
(
2021
).
82.
H.
Zhang
,
A. V.
Dvornikov
,
I. G.
Huttner
,
X.
Ma
,
C. F.
Santiago
,
D.
Fatkin
, and
X.
Xu
, “
A Langendorff-like system to quantify cardiac pump function in adult zebrafish
,”
Dis. Model. Mech.
11
,
dmm034819
(
2018
).
83.
H.
Li
,
C.
Liu
,
M.
Bao
,
W.
Liu
,
Y.
Nie
,
H.
Lian
, and
S.
Hu
, “
Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart
,”
J. Cell. Mol. Med.
24
,
14619
14625
(
2020
).
84.
X.
Rossello
,
A. R.
Hall
,
R. M.
Bell
, and
D. M.
Yellon
, “
Characterization of the Langendorff perfused isolated mouse heart model of global ischemia–reperfusion injury: impact of ischemia and reperfusion length on infarct size and LDH release
,”
J. Cardiovasc. Pharmacol. Ther.
21
,
286
295
(
2016
).
85.
K.
Wang
,
D.
Terrar
,
D. J.
Gavaghan
,
R.
Mu-u-min
,
P.
Kohl
, and
C.
Bollensdorff
, “
Living cardiac tissue slices: An organotypic pseudo two-dimensional model for cardiac biophysics research
,”
Prog. Biophys. Mol. Biol.
115
,
314
327
(
2014
).
86.
Q.
Ou
,
Z.
Jacobson
,
R. R. E.
Abouleisa
,
X.-L.
Tang
,
S. M.
Hindi
,
A.
Kumar
,
K. N.
Ivey
,
G.
Giridharan
,
A.
El-Baz
,
K.
Brittian
,
B.
Rood
,
Y.-H.
Lin
,
S. A.
Watson
,
F.
Perbellini
,
T. A.
McKinsey
,
B. G.
Hill
,
S. P.
Jones
,
C. M.
Terracciano
,
R.
Bolli
, and
T. M. A.
Mohamed
, “
Physiological biomimetic culture system for pig and human heart slices
,”
Circ. Res.
125
,
628
642
(
2019
).
87.
F. G.
Pitoulis
,
S. A.
Watson
,
F.
Perbellini
, and
C. M.
Terracciano
, “
Myocardial slices come to age: An intermediate complexity in vitro cardiac model for translational research
,”
Cardiovasc. Res.
116
,
1275
1287
(
2020
).
88.
C.
Fischer
,
H.
Milting
,
E.
Fein
,
E.
Reiser
,
K.
Lu
,
T.
Seidel
,
C.
Schinner
,
T.
Schwarzmayr
,
R.
Schramm
,
R.
Tomasi
,
B.
Husse
,
X.
Cao-Ehlker
,
U.
Pohl
, and
A.
Dendorfer
, “
Long-term functional and structural preservation of precision-cut human myocardium under continuous electromechanical stimulation in vitro
,”
Nat. Commun.
10
,
117
(
2019
).
89.
C.
Kang
,
Y.
Qiao
,
G.
Li
,
K.
Baechle
,
P.
Camelliti
,
S.
Rentschler
, and
I. R.
Efimov
, “
Human organotypic cultured cardiac slices: New platform for high throughput preclinical human trials
,”
Sci. Rep.
6
,
28798
(
2016
).
90.
S. A.
Watson
,
M.
Scigliano
,
I.
Bardi
,
R.
Ascione
,
C. M.
Terracciano
, and
F.
Perbellini
, “
Preparation of viable adult ventricular myocardial slices from large and small mammals
,”
Nat. Protoc.
12
,
2623
2639
(
2017
).
91.
F.
Alqarni
,
M.
Alsaadi
, and
F.
Karem
, “
MR image analysis of ex vivo mouse model of heart ischemia
,”
Saudi J. Biol. Sci.
28
,
1990
1998
(
2021
).
92.
J.-F.
Montero-Bullon
,
S. S.
Aveiro
,
T.
Melo
,
T.
Martins-Marques
,
D.
Lopes
,
B.
Neves
,
H.
Girão
,
M.
Rosário M Domingues
, and
P.
Domingues
, “
Cardiac phospholipidome is altered during ischemia and reperfusion in an ex vivo rat model
,”
Biochem. Biophys. Rep.
27
,
101037
(
2021
).
93.
V.
Yadav
,
N.
Chong
,
B.
Ellis
,
X.
Ren
,
S.
Senapati
,
H.-C.
Chang
, and
P.
Zorlutuna
, “
Constant-potential environment for activating and synchronizing cardiomyocyte colonies with on-chip ion-depleting perm-selective membranes
,”
Lab Chip
20
,
4273
4284
(
2020
).
94.
B. W.
Ellis
,
D. O.
Traktuev
,
S.
Merfeld-Clauss
,
U. I.
Can
,
M.
Wang
,
R.
Bergeron
,
P.
Zorlutuna
, and
K. L.
March
, “
Adipose stem cell secretome markedly improves rodent heart and hiPSC-derived cardiomyocyte recovery from cardioplegic transport solution exposure
,”
Stem Cells
39
,
170
182
(
2021
).
95.
L.
He
and
B.
Zhou
, “
Cardiomyocyte proliferation: Remove brakes and push accelerators
,”
Cell Res.
27
,
959
960
(
2017
).
96.
M.-T.
Zhao
,
S.
Ye
,
J.
Su
, and
V.
Garg
, “
Cardiomyocyte proliferation and maturation: Two sides of the same coin for heart regeneration
,”
Front. Cell Dev. Biol.
8
,
594226
(
2020
).
97.
A. K.
Peter
,
M. A.
Bjerke
, and
L. A.
Leinwand
, “
Biology of the cardiac myocyte in heart disease
,”
Mol. Biol. Cell
27
,
2149
2160
(
2016
).
98.
M.
Watanabe
,
H.
Horie
,
Y.
Kurata
,
Y.
Inoue
,
T.
Notsu
,
T.
Wakimizu
,
M.
Adachi
,
K.
Yamamoto
,
K.
Morikawa
,
M.
Kuwabara
,
T.
Sakaguchi
,
T.
Morisaki
,
J.
Miake
,
M.
Nishimura
,
M.
Tsuneto
,
Y.
Shirayoshi
,
S.
Ito
,
M.
Kitakaze
,
H.
Ninomiya
,
K.
Yamamoto
, and
I.
Hisatome
, “
Esm1 and Stc1 as angiogenic factors responsible for protective actions of adipose-derived stem cell sheets on chronic heart failure after rat myocardial infarction
,”
Circ. J.
85
,
657
666
(
2021
).
99.
P.
Szaraz
,
Y. S.
Gratch
,
F.
Iqbal
, and
C. L.
Librach
, “
In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells
,”
J. Visualized Exp.
126
,
e55757
(
2017
).
100.
X.
Guo
,
Y.
Bai
,
L.
Zhang
,
B.
Zhang
,
N.
Zagidullin
,
K.
Carvalho
,
Z.
Du
, and
B.
Cai
, “
Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: New regulators and its implications
,”
Stem Cell Res. Ther.
9
,
44
(
2018
).
101.
S.-C.
Choi
,
H.-R.
Seo
,
L.-H.
Cui
,
M.-H.
Song
,
J.-M.
Noh
,
K.-S.
Kim
,
J.-H.
Choi
,
J.-H.
Kim
,
C.-Y.
Park
,
H. J.
Joo
,
S. J.
Hong
,
T. H.
Ko
,
J.-I.
Choi
,
H. J.
Kim
,
J.-H.
Kim
,
S.-H.
Paek
,
J.-N.
Park
,
D.-H.
Kim
,
Y.
Jang
,
Y.
Park
, and
D.-S.
Lim
, “
Modeling hypoxic stress in vitro using human embryonic stem cells derived cardiomyocytes matured by FGF4 and ascorbic acid treatment
,”
Cells
10
,
2741
(
2021
).
102.
X.
Ren
,
B. W.
Ellis
,
G.
Ronan
,
S. R.
Blood
,
C.
DeShetler
,
S.
Senapati
,
K. L.
March
,
E.
Handberg
,
D.
Anderson
,
C.
Pepine
,
H.-C.
Chang
, and
P.
Zorlutuna
, “
A multiplexed ion-exchange membrane-based miRNA (MIX·miR) detection platform for rapid diagnosis of myocardial infarction
,”
Lab Chip
21
,
3876
3887
(
2021
).
103.
M. J.
Sebastião
,
M.
Serra
,
R.
Pereira
,
I.
Palacios
,
P.
Gomes-Alves
, and
P. M.
Alves
, “
Human cardiac progenitor cell activation and regeneration mechanisms: Exploring a novel myocardial ischemia/reperfusion in vitro model
,”
Stem Cell Res. Ther.
10
,
77
(
2019
).
104.
M.
Häkli
,
J.
Kreutzer
,
A.-J.
Mäki
,
H.
Välimäki
,
H.
Lappi
,
H.
Huhtala
,
P.
Kallio
,
K.
Aalto-Setälä
, and
M.
Pekkanen-Mattila
, “
Human induced pluripotent stem cell-based platform for modeling cardiac ischemia
,”
Sci. Rep.
11
,
4153
(
2021
).
105.
A.
Clerk
,
T. J.
Kemp
,
G.
Zoumpoulidou
, and
P. H.
Sugden
, “
Cardiac myocyte gene expression profiling during H2O2-induced apoptosis
,”
Physiol. Genomics
29
,
118
127
(
2007
).
106.
E.
Son
,
D.
Lee
,
C.-W.
Woo
, and
Y.-H.
Kim
, “
The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts
,”
Korean J. Physiol. Pharmacol.
24
,
173
183
(
2020
).
107.
C.
Gentile
, “
Filling the gaps between the in vivo and in vitro microenvironment: engineering of spheroids for stem cell technology
,”
Curr. Stem Cell Res. Ther.
11
,
652
665
(
2016
).
108.
T.
Chen
and
G.
Vunjak-Novakovic
, “
In vitro models of ischemia-reperfusion injury
,”
Regener. Eng. Transl. Med.
4
,
142
153
(
2018
).
109.
P.
Sharma
,
X.
Wang
,
C. L. C.
Ming
,
L.
Vettori
,
G.
Figtree
,
A.
Boyle
, and
C.
Gentile
, “
Considerations for the bioengineering of advanced cardiac in vitro models of myocardial infarction
,”
Small
17
,
2003765
(
2021
).
110.
M. A. C.
Williams
,
D. B.
Mair
,
W.
Lee
,
E.
Lee
, and
D.-H.
Kim
, “
Engineering three-dimensional vascularized cardiac tissues
,”
Tissue Eng., Part B
28
,
336
350
(
2022
).
111.
M.
Wanjare
,
M.
Kawamura
,
C.
Hu
,
C.
Alcazar
,
H.
Wang
,
Y. J.
Woo
, and
N. F.
Huang
, “
Vascularization of engineered spatially patterned myocardial tissue derived from human pluripotent stem cells in vivo
,”
Front. Bioeng. Biotechnol.
7
,
208
(
2019
).
112.
Y.
Haraguchi
,
T.
Shimizu
,
M.
Yamato
, and
T.
Okano
, “
Regenerative therapies using cell sheet-based tissue engineering for cardiac disease
,”
Cardiol. Res. Pract.
2011
,
845170
.
113.
M.
Yamato
and
T.
Okano
, “
Cell sheet engineering
,”
Mater. Today
7
,
42
47
(
2004
).
114.
S.
Masuda
,
T.
Shimizu
,
M.
Yamato
, and
T.
Okano
, “
Cell sheet engineering for heart tissue repair
,”
Adv. Drug Delivery Rev.
60
,
277
285
(
2008
).
115.
D.
Sasaki
,
K.
Matsuura
,
H.
Seta
,
Y.
Haraguchi
,
T.
Okano
, and
T.
Shimizu
, “
Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue
,”
PLOS ONE
13
,
e0198026
(
2018
).
116.
K.
Sakaguchi
,
H.
Takahashi
,
Y.
Tobe
,
D.
Sasaki
,
K.
Matsuura
,
K.
Iwasaki
,
T.
Shimizu
, and
M.
Umezu
, “
Measuring the contractile force of multilayered human cardiac cell sheets
,”
Tissue Eng., Part C
26
,
485
492
(
2020
).
117.
Y.
Haraguchi
,
T.
Shimizu
,
K.
Matsuura
,
H.
Sekine
,
N.
Tanaka
,
K.
Tadakuma
,
M.
Yamato
,
M.
Kaneko
, and
T.
Okano
 III
, “
Cell sheet technology for cardiac tissue engineering
,” in
Cardiac Tissue Engineering: Methods and Protocols
, edited by
M.
Radisic
and
L. D.
Black
(
Springer
,
New York, NY
,
2014
), pp.
139
155
.
118.
L.
Wang
,
V.
Serpooshan
, and
J.
Zhang
, “
Engineering human cardiac muscle patch constructs for prevention of post-infarction LV remodeling
,”
Front. Cardiovasc. Med.
8
,
111
(
2021
).
119.
Y.
Yamasaki
,
K.
Matsuura
,
D.
Sasaki
, and
T.
Shimizu
, “
Assessment of human bioengineered cardiac tissue function in hypoxic and re-oxygenized environments to understand functional recovery in heart failure
,”
Regener. Ther.
18
,
66
75
(
2021
).
120.
C.
Zuppinger
, “
3D cardiac cell culture: A critical review of current technologies and applications
,”
Front. Cardiovasc. Med.
6
,
87
(
2019
).
121.
M.
Hofer
and
M. P.
Lutolf
, “
Engineering organoids
,”
Nat. Rev. Mater.
6
,
402
420
(
2021
).
122.
J.
Kim
,
B.-K.
Koo
, and
J. A.
Knoblich
, “
Human organoids: Model systems for human biology and medicine
,”
Nat. Rev. Mol. Cell Biol.
21
,
571
584
(
2020
).
123.
D.
Zhao
,
W.
Lei
, and
S.
Hu
, “
Cardiac organoid—A promising perspective of preclinical model
,”
Stem Cell Res. Ther.
12
,
272
(
2021
).
124.
M.
Fujii
,
M.
Matano
,
K.
Toshimitsu
,
A.
Takano
,
Y.
Mikami
,
S.
Nishikori
,
S.
Sugimoto
, and
T.
Sato
, “
Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition
,”
Cell Stem Cell
23
,
787
(
2018
).
125.
M. A.
Lancaster
,
M.
Renner
,
C.-A.
Martin
,
D.
Wenzel
,
L. S.
Bicknell
,
M. E.
Hurles
,
T.
Homfray
,
J. M.
Penninger
,
A. P.
Jackson
, and
J. A.
Knoblich
, “
Cerebral organoids model human brain development and microcephaly
,”
Nature
501
,
373
379
(
2013
).
126.
M.
Takasato
,
P. X.
Er
,
H. S.
Chiu
,
B.
Maier
,
G. J.
Baillie
,
C.
Ferguson
,
R. G.
Parton
,
E. J.
Wolvetang
,
M. S.
Roost
,
S. M.
Chuva de Sousa Lopes
, and
M. H.
Little
, “
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
,”
Nature
526
,
564
568
(
2015
).
127.
H.
Hu
,
H.
Gehart
,
B.
Artegiani
,
C.
LÖpez-Iglesias
,
F.
Dekkers
,
O.
Basak
,
J.
van Es
,
S. M.
Chuva de Sousa Lopes
,
H.
Begthel
,
J.
Korving
,
M.
van den Born
,
C.
Zou
,
C.
Quirk
,
L.
Chiriboga
,
C. M.
Rice
,
S.
Ma
,
A.
Rios
,
P. J.
Peters
,
Y. P.
de Jong
, and
H.
Clevers
, “
Long-term expansion of functional mouse and human hepatocytes as 3D organoids
,”
Cell
175
,
1591
(
2018
).
128.
M. Y.
Turco
,
L.
Gardner
,
J.
Hughes
,
T.
Cindrova-Davies
,
M. J.
Gomez
,
L.
Farrell
,
M.
Hollinshead
,
S. G. E.
Marsh
,
J. J.
Brosens
,
H. O.
Critchley
,
B. D.
Simons
,
M.
Hemberger
,
B.-K.
Koo
,
A.
Moffett
, and
G. J.
Burton
, “
Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium
,”
Nat. Cell Biol.
19
,
568
577
(
2017
).
129.
K.
Arai
,
D.
Murata
,
A. R.
Verissimo
,
Y.
Mukae
,
M.
Itoh
,
A.
Nakamura
,
S.
Morita
, and
K.
Nakayama
, “
Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer
,”
PLOS ONE
13
,
e0209162
(
2018
).
130.
L.
Drakhlis
,
S.
Biswanath
,
C.-M.
Farr
,
V.
Lupanow
,
J.
Teske
,
K.
Ritzenhoff
,
A.
Franke
,
F.
Manstein
,
E.
Bolesani
,
H.
Kempf
,
S.
Liebscher
,
K.
Schenke-Layland
,
J.
Hegermann
,
L.
Nolte
,
H.
Meyer
,
J.
de la Roche
,
S.
Thiemann
,
C.
Wahl-Schott
,
U.
Martin
, and
R.
Zweigerdt
, “
Human heart-forming organoids recapitulate early heart and foregut development
,”
Nat. Biotechnol.
39
,
737
746
(
2021
).
131.
B.
Nugraha
,
M. F.
Buono
,
L.
von Boehmer
,
S. P.
Hoerstrup
, and
M. Y.
Emmert
, “
Human cardiac organoids for disease modeling
,”
Clin. Pharmacol. Ther.
105
,
79
85
(
2019
).
132.
Y. R.
Lewis-Israeli
,
A. H.
Wasserman
,
M. A.
Gabalski
,
B. D.
Volmert
,
Y.
Ming
,
K. A.
Ball
,
W.
Yang
,
J.
Zou
,
G.
Ni
,
N.
Pajares
,
X.
Chatzistavrou
,
W.
Li
,
C.
Zhou
, and
A.
Aguirre
, “
Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease
,”
Nat. Commun.
12
,
5142
(
2021
).
133.
J.-S.
Hulot
, “
Modeling cardiac arrhythmias with organoids∗
,”
J. Am. Coll. Cardiol.
73
,
2325
2327
(
2019
).
134.
F.
Stillitano
,
I. C.
Turnbull
,
I.
Karakikes
,
M.
Nonnenmacher
,
P.
Backeris
,
J.-S.
Hulot
,
E. G.
Kranias
,
R. J.
Hajjar
, and
K. D.
Costa
, “
Genomic correction of familial cardiomyopathy in human engineered cardiac tissues
,”
Eur. Heart J.
37
,
3282
3284
(
2016
).
135.
H. K.
Voges
,
R. J.
Mills
,
D. A.
Elliott
,
R. G.
Parton
,
E. R.
Porrello
, and
J. E.
Hudson
, “
Development of a human cardiac organoid injury model reveals innate regenerative potential
,”
Development
144
,
1118
1127
(
2017
).
136.
P.
Sharma
,
C. L. C.
Ming
,
X.
Wang
,
L. A.
Bienvenu
,
D.
Beck
,
G.
Figtree
,
A.
Boyle
, and
C.
Gentile
, “
Biofabrication of advanced in vitro 3D models to study ischaemic and doxorubicin-induced myocardial damage
,”
Biofabrication
14
,
025003
(
2022
).
137.
R. G.
Katare
,
M.
Ando
,
Y.
Kakinuma
, and
T.
Sato
, “
Engineered heart tissue: A novel tool to study the ischemic changes of the heart in vitro
,”
PLOS ONE
5
,
e9275
(
2010
).
138.
H.
Yang
,
N.
Shao
,
A.
Holmström
,
X.
Zhao
,
T.
Chour
,
H.
Chen
,
I.
Itzhaki
,
H.
Wu
,
M.
Ameen
,
N. J.
Cunningham
,
C.
Tu
,
M.-T.
Zhao
,
A. F.
Tarantal
,
O. J.
Abilez
, and
J. C.
Wu
, “
Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue
,”
Cardiovasc. Res.
117
,
2125
2136
(
2020
).
139.
T.
Chen
and
G.
Vunjak-Novakovic
, “
Human tissue-engineered model of myocardial ischemia–reperfusion injury
,”
Tissue Eng., Part A
25
,
711
724
(
2019
).
140.
B.
Mosadegh
,
B. E.
Dabiri
,
M. R.
Lockett
,
R.
Derda
,
P.
Campbell
,
K. K.
Parker
, and
G. M.
Whitesides
, “
Three-dimensional paper-based model for cardiac ischemia
,”
Adv. Healthcare Mater.
3
,
1036
1043
(
2014
).
141.
A.
Hidalgo
,
N.
Glass
,
D.
Ovchinnikov
,
S.-K.
Yang
,
X.
Zhang
,
S.
Mazzone
,
C.
Chen
,
E.
Wolvetang
, and
J.
Cooper-White
, “
Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes
,”
APL Bioeng.
2
,
026102
(
2018
).
142.
A.
Acun
,
T. D.
Nguyen
, and
P.
Zorlutuna
, “
In vitro aged, hiPSC-origin engineered heart tissue models with age-dependent functional deterioration to study myocardial infarction
,”
Acta Biomater.
94
,
372
391
(
2019
).
143.
A.
Acun
and
P.
Zorlutuna
, “
CRISPR/Cas9 edited induced pluripotent stem cell-based vascular tissues to model aging and disease-dependent impairment
,”
Tissue Eng., Part A
25
,
759
772
(
2019
).
144.
X.
Yue
,
A.
Acun
, and
P.
Zorlutuna
, “
Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system
,”
Acta Biomater.
58
,
337
348
(
2017
).
145.
Z.
Liu
,
H.
Wang
,
Y.
Wang
,
Q.
Lin
,
A.
Yao
,
F.
Cao
,
D.
Li
,
J.
Zhou
,
C.
Duan
,
Z.
Du
,
Y.
Wang
, and
C.
Wang
, “
The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment
,”
Biomaterials
33
,
3093
3106
(
2012
).
146.
S.
Funcke
,
T. R.
Werner
,
M.
Hein
,
B. M.
Ulmer
,
A.
Hansen
,
T.
Eschenhagen
, and
M. N.
Hirt
, “
Effects of the delta opioid receptor agonist dadle in a novel hypoxia-reoxygenation model on human and rat-engineered heart tissue: A pilot study
,”
Biomolecules
10
,
1309
(
2020
).
147.
C. E.
Rupert
,
T. Y.
Kim
,
B.-R.
Choi
, and
K. L. K.
Coulombe
, “
Human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes in engineered myocardium
,”
Stem Cells Int.
2020
,
e9363809
.
148.
E.
Giacomelli
,
V.
Meraviglia
,
G.
Campostrini
,
A.
Cochrane
,
X.
Cao
,
R. W. J.
van Helden
,
A.
Krotenberg Garcia
,
M.
Mircea
,
S.
Kostidis
,
R. P.
Davis
,
B. J.
van Meer
,
C. R.
Jost
,
A. J.
Koster
,
H.
Mei
,
D. G.
Míguez
,
A. A.
Mulder
,
M.
Ledesma-Terrón
,
G.
Pompilio
,
L.
Sala
,
D. C. F.
Salvatori
,
R. C.
Slieker
,
E.
Sommariva
,
A. A. F.
de Vries
,
M.
Giera
,
S.
Semrau
,
L. G. J.
Tertoolen
,
V. V.
Orlova
,
M.
Bellin
, and
C. L.
Mummery
, “
Human-iPSC-derived cardiac stromal cells enhance maturation in 3d cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease
,”
Cell Stem Cell
26
,
862
(
2020
).
149.
K.
Soon
,
O.
Mourad
, and
S. S.
Nunes
, “
Engineered human cardiac microtissues: The state-of-the-(He)art
,”
Stem Cells
39
,
1008
1016
(
2021
).
150.
C. V.
del Campo
,
N. Y.
Liaw
,
M.
Gunadasa-Rohling
,
M.
Matthaei
,
L.
Braga
,
T.
Kennedy
,
G.
Salinas
,
N.
Voigt
,
M.
Giacca
,
W.-H.
Zimmermann
, and
P. R.
Riley
, “
Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer
,”
Cardiovasc. Res.
118
,
597
(
2021
).
151.
F.
Pampaloni
,
E. G.
Reynaud
, and
E. H. K.
Stelzer
, “
The third dimension bridges the gap between cell culture and live tissue
,”
Nat. Rev. Mol. Cell Biol.
8
,
839
845
(
2007
).
152.
S.
Bhagat
and
S.
Singh
, “
Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications
,” in
Progress in Molecular Biology and Translational Science
, edited by
A.
Pandya
and
V.
Singh
(
Academic Press
,
2022
), Chap. 7, pp.
205
240
.
153.
G.
Uppal
,
G.
Bahcecioglu
,
P.
Zorlutuna
, and
D. C.
Vural
, “
Tissue failure propagation as mediated by circulatory flow
,”
Biophys. J.
119
,
2573
2583
(
2020
).
154.
Q.
Yang
,
Z.
Xiao
,
X.
Lv
,
T.
Zhang
, and
H.
Liu
, “
Fabrication and biomedical applications of heart-on-a-chip
,”
Int. J. Bioprint.
7
,
370
(
2021
).
155.
V.
Paloschi
,
M.
Sabater-Lleal
,
H.
Middelkamp
,
A.
Vivas
,
S.
Johansson
,
A.
van der Meer
,
M.
Tenje
, and
L.
Maegdefessel
, “
Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases
,”
Cardiovasc. Res.
117
,
2742
2754
(
2021
).
156.
K.
Ronaldson-Bouchard
and
G.
Vunjak-Novakovic
, “
Organs-on-a-Chip: A fast track for engineered human tissues in drug development
,”
Cell Stem Cell
22
,
310
324
(
2018
).
157.
K. T.
Wagner
,
T. R.
Nash
,
B.
Liu
,
G.
Vunjak-Novakovic
, and
M.
Radisic
, “
Extracellular vesicles in cardiac regeneration: potential applications for tissues-on-a-chip
,”
Trends Biotechnol.
39
,
755
773
(
2021
).
158.
Y. S.
Zhang
,
A.
Arneri
,
S.
Bersini
,
S.-R.
Shin
,
K.
Zhu
,
Z.
Goli-Malekabadi
,
J.
Aleman
,
C.
Colosi
,
F.
Busignani
,
V.
Dell'Erba
,
C.
Bishop
,
T.
Shupe
,
D.
Demarchi
,
M.
Moretti
,
M.
Rasponi
,
M. R.
Dokmeci
,
A.
Atala
, and
A.
Khademhosseini
, “
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
,”
Biomaterials
110
,
45
59
(
2016
).
159.
S.
Beverung
,
J.
Wu
, and
R.
Steward
, “
Lab-on-a-chip for cardiovascular physiology and pathology
,”
Micromachines
11
,
898
(
2020
).
160.
D.
Cruz-Moreira
,
R.
Visone
,
F.
Vasques-Nóvoa
,
A. S.
Barros
,
A.
Leite-Moreira
,
A.
Redaelli
,
M.
Moretti
, and
M.
Rasponi
, “
Assessing the influence of perfusion on cardiac microtissue maturation: A heart-on-chip platform embedding peristaltic pump capabilities
,”
Biotechnol. Bioeng.
118
,
3128
3137
(
2021
).
161.
T. J.
Kolanowski
,
M.
Busek
,
M.
Schubert
,
A.
Dmitrieva
,
B.
Binnewerg
,
J.
Pöche
,
K.
Fisher
,
F.
Schmieder
,
S.
Grünzner
,
S.
Hansen
,
A.
Richter
,
A.
El-Armouche
,
F.
Sonntag
, and
K.
Guan
, “
Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system
,”
Acta Biomater.
102
,
273
286
(
2020
).
162.
M.
Abulaiti
,
Y.
Yalikun
,
K.
Murata
,
A.
Sato
,
M. M.
Sami
,
Y.
Sasaki
,
Y.
Fujiwara
,
K.
Minatoya
,
Y.
Shiba
,
Y.
Tanaka
, and
H.
Masumoto
, “
Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function
,”
Sci. Rep.
10
,
19201
(
2020
).
163.
S.
Martewicz
,
F.
Michielin
,
E.
Serena
,
A.
Zambon
,
M.
Mongillo
, and
N.
Elvassore
, “
Reversible alteration of calcium dynamics in cardiomyocytes during acute hypoxia transient in a microfluidic platform
,”
Integr. Biol.
4
,
153
164
(
2012
).
164.
B. W.
Ellis
,
G.
Ronan
,
X.
Ren
,
G.
Bahcecioglu
,
S.
Senapati
,
D.
Anderson
,
E.
Handberg
,
K. L.
March
,
H.-C.
Chang
, and
P.
Zorlutuna
, “
Human heart anoxia and reperfusion tissue (HEART) model for the rapid study of exosome bound miRNA expression as biomarkers for myocardial infarction
,”
Small
18
,
2201330
(
2022
).
165.
J.
Veldhuizen
,
R.
Chavan
,
B.
Moghadas
,
J. G.
Park
,
V. D.
Kodibagkar
,
R. Q.
Migrino
, and
M.
Nikkhah
, “
Cardiac ischemia on-a-chip to investigate cellular and molecular response of myocardial tissue under hypoxia
,”
Biomaterials
281
,
121336
(
2022
).
166.
H.
Liu
,
O. A.
Bolonduro
,
N.
Hu
,
J.
Ju
,
A. A.
Rao
,
B. M.
Duffy
,
Z.
Huang
,
L. D.
Black
, and
B. P.
Timko
, “
Heart-on-a-chip model with integrated extra- and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia
,”
Nano Lett.
20
,
2585
2593
(
2020
).
167.
C.
Chen
,
B. T.
Mehl
,
A. S.
Munshi
,
A. D.
Townsend
,
D. M.
Spence
, and
R. S.
Martin
, “
3D-printed microfluidic devices: Fabrication, advantages and limitations—A mini review
,”
Anal. Methods
8
,
6005
6012
(
2016
).
168.
Z.-T.
Xie
,
D.-H.
Kang
, and
M.
Matsusaki
, “
Resolution of 3D bioprinting inside bulk gel and granular gel baths
,”
Soft Matter
17
,
8769
8785
(
2021
).
169.
Y.
Sriphutkiat
,
S.
Kasetsirikul
,
D.
Ketpun
, and
Y.
Zhou
, “
Cell alignment and accumulation using acoustic nozzle for bioprinting
,”
Sci. Rep.
9
,
17774
(
2019
).
170.
M.
Qasim
,
F.
Haq
,
M.-H.
Kang
, and
J.-H.
Kim
, “
3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration
,”
Int. J. Nanomed.
14
,
1311
1333
(
2019
).
171.
A.
Malekpour
and
X.
Chen
, “
Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views
,”
J. Funct. Biomater.
13
,
40
(
2022
).
172.
W. L.
Ng
,
C. K.
Chua
, and
Y.-F.
Shen
, “
Print me an organ! Why we are not there yet
,”
Prog. Polym. Sci.
97
,
101145
(
2019
).
173.
W.
Kim
,
C. H.
Jang
, and
G. H.
Kim
, “
A myoblast-laden collagen bioink with fully aligned au nanowires for muscle-tissue regeneration
,”
Nano Lett.
19
,
8612
8620
(
2019
).
174.
M.
Samandari
,
F.
Alipanah
,
K.
Majidzadeh-A
,
M. M.
Alvarez
,
G.
Trujillo-de Santiago
, and
A.
Tamayol
, “
Controlling cellular organization in bioprinting through designed 3D microcompartmentalization
,”
Appl. Phys. Rev.
8
,
021404
(
2021
).
175.
N.
Liu
,
X.
Ye
,
B.
Yao
,
M.
Zhao
,
P.
Wu
,
G.
Liu
,
D.
Zhuang
,
H.
Jiang
,
X.
Chen
,
Y.
He
,
S.
Huang
, and
P.
Zhu
, “
Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration
,”
Bioact. Mater.
6
,
1388
1401
(
2021
).
176.
Z.
Wang
,
L.
Wang
,
T.
Li
,
S.
Liu
,
B.
Guo
,
W.
Huang
, and
Y.
Wu
, “
3D bioprinting in cardiac tissue engineering
,”
Theranostics
11
,
7948
7969
(
2021
).
177.
C. S.
Ong
,
T.
Fukunishi
,
H.
Zhang
,
C. Y.
Huang
,
A.
Nashed
,
A.
Blazeski
,
D.
DiSilvestre
,
L.
Vricella
,
J.
Conte
,
L.
Tung
,
G. F.
Tomaselli
, and
N.
Hibino
, “
Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes
,”
Sci. Rep.
7
,
4566
(
2017
).
178.
M. A.
Skylar-Scott
,
S. G. M.
Uzel
,
L. L.
Nam
,
J. H.
Ahrens
,
R. L.
Truby
,
S.
Damaraju
, and
J. A.
Lewis
, “
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels
,”
Sci. Adv.
5
,
eaaw2459
(
2019
).
179.
L.
Bova
,
F.
Billi
, and
E.
Cimetta
, “
Mini-review: Advances in 3D bioprinting of vascularized constructs
,”
Biol. Direct
15
,
22
(
2020
).
180.
Y.
Tsukamoto
,
T.
Akagi
, and
M.
Akashi
, “
Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer
,”
Sci. Rep.
10
,
5484
(
2020
).
181.
L.
Polonchuk
,
M.
Chabria
,
L.
Badi
,
J.-C.
Hoflack
,
G.
Figtree
,
M. J.
Davies
, and
C.
Gentile
, “
Cardiac spheroids as promising in vitro models to study the human heart microenvironment
,”
Sci. Rep.
7
,
7005
(
2017
).
182.
D. J.
Richards
,
Y.
Li
,
C. M.
Kerr
,
J.
Yao
,
G. C.
Beeson
,
R. C.
Coyle
,
X.
Chen
,
J.
Jia
,
B.
Damon
,
R.
Wilson
,
E.
Starr Hazard
,
G.
Hardiman
,
D. R.
Menick
,
C. C.
Beeson
,
H.
Yao
,
T.
Ye
, and
Y.
Mei
, “
Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity
,”
Nat. Biomed. Eng.
4
,
446
462
(
2020
).
183.
G. A.
Figtree
,
K. J.
Bubb
,
O.
Tang
,
E.
Kizana
, and
C.
Gentile
, “
Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis
,”
Cells Tissues Organs
204
,
191
198
(
2017
).
184.
M. L.
McCain
,
A.
Agarwal
,
H. W.
Nesmith
,
A. P.
Nesmith
, and
K. K.
Parker
, “
Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
,”
Biomaterials
35
,
5462
5471
(
2014
).
185.
A. H.
Sadeghi
,
S. R.
Shin
,
J. C.
Deddens
,
G.
Fratta
,
S.
Mandla
,
I. K.
Yazdi
,
G.
Prakash
,
S.
Antona
,
D.
Demarchi
,
M. P.
Buijsrogge
,
J. P. G.
Sluijter
,
J.
Hjortnaes
, and
A.
Khademhosseini
, “
Engineered three-dimensional cardiac fibrotic tissue to study fibrotic remodeling
,”
Adv. Healthcare Mater.
6
,
1601434
(
2017
).
186.
P.
Koti
,
N.
Muselimyan
,
E.
Mirdamadi
,
H.
Asfour
, and
N. A.
Sarvazyan
, “
Use of GelMA for 3D printing of cardiac myocytes and fibroblasts
,”
J. 3D Print. Med.
3
,
11
(
2019
).
187.
N. N.
Khalil
and
M. L.
McCain
, “
Engineering the cellular microenvironment of post-infarct myocardium on a chip
,”
Front. Cardiovasc. Med.
8
,
709871
(
2021
).
188.
O.
Mastikhina
,
B.-U.
Moon
,
K.
Williams
,
R.
Hatkar
,
D.
Gustafson
,
O.
Mourad
,
X.
Sun
,
M.
Koo
,
A. Y. L.
Lam
,
Y.
Sun
,
J. E.
Fish
,
E. W. K.
Young
, and
S. S.
Nunes
, “
Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing
,”
Biomaterials
233
,
119741
(
2020
).
189.
A.
Mainardi
,
F.
Carminati
,
G. S.
Ugolini
,
P.
Occhetta
,
G.
Isu
,
D. R.
Diaz
,
G.
Reid
,
R.
Visone
,
M.
Rasponi
, and
A.
Marsano
, “
A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts
,”
Lab Chip
21
,
4177
4195
(
2021
).
190.
A. C.
Daly
,
P.
Pitacco
,
J.
Nulty
,
G. M.
Cunniffe
, and
D. J.
Kelly
, “
3D printed microchannel networks to direct vascularisation during endochondral bone repair
,”
Biomaterials
162
,
34
46
(
2018
).
191.
C. C.
Chang
,
E. D.
Boland
,
S. K.
Williams
, and
J. B.
Hoying
, “
Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
,”
J. Biomed. Mater. Res., Part B
98B
,
160
170
(
2011
).
192.
Y. S.
Zhang
,
G.
Haghiashtiani
,
T.
Hübscher
,
D. J.
Kelly
,
J. M.
Lee
,
M.
Lutolf
,
M. C.
McAlpine
,
W. Y.
Yeong
,
M.
Zenobi-Wong
, and
J.
Malda
, “
3D extrusion bioprinting
,”
Nat. Rev. Methods Primers
1
,
75
(
2021
).
193.
G.
Dong
,
Y.
Hu
,
Y.
Huyan
,
W.
Zhang
,
C.
Yang
, and
L.
Da
, “
3D-printing of scaffold within bionic vascular network applicable to tissue engineering
,” in
Proceedings of the Seventh Asia International Symposium on Mechatronics
, edited by
B.
Duan
,
K.
Umeda
, and
W.
Hwang
(
Springer
,
Singapore
,
2020
), pp.
917
922
.
194.
J.
Nie
,
Q.
Gao
,
J.
Fu
, and
Y.
He
, “
Grafting of 3D bioprinting to in vitro drug screening: A review
,”
Adv. Healthcare Mater.
9
,
1901773
(
2020
).
195.
S. V.
Rojas
,
G.
Kensah
,
A.
Rotaermel
,
H.
Baraki
,
I.
Kutschka
,
R.
Zweigerdt
,
U.
Martin
,
A.
Haverich
,
I.
Gruh
, and
A.
Martens
, “
Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction
,”
PLoS One
12
,
e0173222
(
2017
).
196.
G.
Germena
and
R.
Hinkel
, “
iPSCs and exosomes: Partners in crime fighting cardiovascular diseases
,”
J. Pers. Med.
11
,
529
(
2021
).
197.
J. H.
Traverse
,
T. D.
Henry
,
N.
Dib
,
A. N.
Patel
,
C.
Pepine
,
G. L.
Schaer
,
J. A.
DeQuach
,
A. M.
Kinsey
,
P.
Chamberlin
, and
K. L.
Christman
, “
First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients
,”
JACC Basic Transl. Sci.
4
,
659
669
(
2019
).
198.
S.
Smagul
,
Y.
Kim
,
A.
Smagulova
,
K.
Raziyeva
,
A.
Nurkesh
, and
A.
Saparov
, “
Biomaterials loaded with growth factors/cytokines and stem cells for cardiac tissue regeneration
,”
Int. J. Mol. Sci.
21
,
5952
(
2020
).
199.
W.-H.
Zimmermann
, “
Tissue engineered heart repair from preclinical models to first-in-patient studies
,”
Curr. Opin. Physiol.
14
,
70
77
(
2020
).
200.
Y.
Guo
,
Y.
Yu
,
S.
Hu
,
Y.
Chen
, and
Z.
Shen
, “
The therapeutic potential of mesenchymal stem cells for cardiovascular diseases
,”
Cell Death Dis.
11
,
349
(
2020
).
201.
M.
Ishida
,
S.
Miyagawa
,
A.
Saito
,
S.
Fukushima
,
A.
Harada
,
E.
Ito
,
F.
Ohashi
,
T.
Watabe
,
J.
Hatazawa
,
K.
Matsuura
, and
Y.
Sawa
, “
Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes is superior to somatic stem cell therapy for restoring cardiac function and oxygen consumption in a porcine model of myocardial infarction
,”
Transplantation
103
,
291
298
(
2019
).
202.
K. E.
Hatzistergos
and
A.
Vedenko
, “
Cardiac cell therapy 3.0
,”
Circ. Res.
121
,
95
97
(
2017
).
203.
J.
Li
,
S.
Hu
,
D.
Zhu
,
K.
Huang
,
X.
Mei
,
B.
López de Juan Abad
, and
K.
Cheng
, “
All roads lead to rome (the heart): Cell retention and outcomes from various delivery routes of cell therapy products to the heart
,”
J. Am. Heart Assoc.
10
,
e020402
(
2021
).
204.
H.
Peng
,
K.
Shindo
,
R. R.
Donahue
, and
A.
Abdel-Latif
, “
Cardiac cell therapy: Insights into the mechanisms of tissue repair
,”
Int. J. Mol. Sci.
22
,
1201
(
2021
).
205.
K.
Neef
,
F.
Drey
,
V.
Lepperhof
,
T.
Wahlers
,
J.
Hescheler
,
Y.-H.
Choi
, and
T.
Šarić
, “
Co-transplantation of mesenchymal stromal cells and induced pluripotent stem cell-derived cardiomyocytes improves cardiac function after myocardial damage
,”
Front. Cardiovasc. Med.
8
,
794690
(
2022
).
206.
S.
Rafii
and
D.
Lyden
, “
Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration
,”
Nat. Med.
9
,
702
712
(
2003
).
207.
L. C.
Amado
,
A. P.
Saliaris
,
K. H.
Schuleri
,
M. St.
John
,
J.-S.
Xie
,
S.
Cattaneo
,
D. J.
Durand
,
T.
Fitton
,
J. Q.
Kuang
,
G.
Stewart
,
S.
Lehrke
,
W. W.
Baumgartner
,
B. J.
Martin
,
A. W.
Heldman
, and
J. M.
Hare
, “
Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
11474
11479
(
2005
).
208.
C.
Zgheib
,
J.
Xu
, and
K. W.
Liechty
, “
Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration
,”
Adv. Wound Care
3
,
344
355
(
2014
).).
209.
A. M.
Piccinini
and
K. S.
Midwood
, “
Illustrating the interplay between the extracellular matrix and microRNAs
,”
Int. J. Exp. Pathol.
95
,
158
180
(
2014
).
210.
M.
Mirotsou
,
Z.
Zhang
,
A.
Deb
,
L.
Zhang
,
M.
Gnecchi
,
N.
Noiseux
,
H.
Mu
,
A.
Pachori
, and
V.
Dzau
, “
Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
1643
1648
(
2007
).
211.
S. M.
Watt
,
F.
Gullo
,
M.
van der Garde
,
D.
Markeson
,
R.
Camicia
,
C. P.
Khoo
, and
J. J.
Zwaginga
, “
The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential
,”
Br. Med. Bull.
108
,
25
53
(
2013
).
212.
J.
Hoffmann
,
A. J.
Glassford
,
T. C.
Doyle
,
R. C.
Robbins
,
S.
Schrepfer
, and
M. P.
Pelletier
, “
Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia
,”
Thorac. Cardiovasc. Surg.
58
,
136
142
(
2010
).
213.
C.
Premer
,
A.
Wanschel
,
V.
Porras
,
W.
Balkan
,
T.
Legendre-Hyldig
,
R. G.
Saltzman
,
C.
Dong
,
I. H.
Schulman
, and
J. M.
Hare
, “
Mesenchymal stem cell secretion of SDF-1α modulates endothelial function in dilated cardiomyopathy
,”
Front. Physiol.
10
,
1182
(
2019
).
214.
V.
Karantalis
and
J. M.
Hare
, “
Use of mesenchymal stem cells for therapy of cardiac disease
,”
Circu. Res.
116
,
1413
1430
(
2015
).
215.
R.
Guo
,
F.
Wan
,
M.
Morimatsu
,
Q.
Xu
,
T.
Feng
,
H.
Yang
,
Y.
Gong
,
S.
Ma
,
Y.
Chang
,
S.
Zhang
,
Y.
Jiang
,
H.
Wang
,
D.
Chang
,
H.
Zhang
,
Y.
Ling
, and
F.
Lan
, “
Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material
,”
Bioact. Mater.
6
,
2999
3012
(
2021
).
216.
S.
Chen
,
W.
Fang
,
F.
Ye
,
Y.-H.
Liu
,
J.
Qian
,
S.
Shan
,
J.
Zhang
,
R. Z.
Chunhua
,
L.
Liao
,
S.
Lin
, and
J.
Sun
, “
Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction
,”
Am. J. Cardiol.
94
,
92
95
(
2004
).
217.
V.
Florea
,
A. C.
Rieger
,
D. L.
DiFede
,
J.
El-Khorazaty
,
M.
Natsumeda
,
M. N.
Banerjee
,
B. A.
Tompkins
,
A.
Khan
,
I. H.
Schulman
,
A. M.
Landin
,
M.
Mushtaq
,
S.
Golpanian
,
M. H.
Lowery
,
J. J.
Byrnes
,
R. C.
Hendel
,
M. G.
Cohen
,
K.
Valasaki
,
M. V.
Pujol
,
E.
Ghersin
,
R.
Miki
,
C.
Delgado
,
F.
Abuzeid
,
M.
Vidro-Casiano
,
R. G.
Saltzman
,
D.
DaFonseca
,
L. V.
Caceres
,
K. N.
Ramdas
,
A.
Mendizabal
,
A. W.
Heldman
,
R. D.
Mitrani
, and
J. M.
Hare
, “
Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the trident study)
,”
Circu. Res.
121
,
1279
1290
(
2017
).
218.
A. J.
Boyle
,
S. P.
Schulman
, and
J. M.
Hare
, “
Stem cell therapy for cardiac repair
,”
Circulation
114
,
339
352
(
2006
).
219.
R.
Thakker
and
P.
Yang
, “
Mesenchymal stem cell therapy for cardiac repair
,”
Curr. Treat. Options Cardiovasc. Med.
16
,
323
(
2014
).
220.
P. A.
Lalit
,
D. J.
Hei
,
A. N.
Raval
, and
T. J.
Kamp
, “
Induced pluripotent stem cells for post–myocardial infarction repair
,”
Circu. Res.
114
,
1328
1345
(
2014
).
221.
T. J.
Nelson
,
A.
Martinez-Fernandez
,
S.
Yamada
,
C.
Perez-Terzic
,
Y.
Ikeda
, and
A.
Terzic
, “
Repair of acute myocardial infarction with iPS induced by human stemness factors
,”
Circulation
120
,
408
416
(
2009
).
222.
R. P.
Ahmed
,
M.
Ashraf
,
S.
Buccini
,
J.
Shujia
, and
H. K.
Haider
, “
Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction
,”
Regener. Med.
6
,
171
178
(
2011
).
223.
Y.
Zhang
,
D.
Wang
,
M.
Chen
,
B.
Yang
,
F.
Zhang
, and
K.
Cao
, “
Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart
,”
PLoS One
6
,
e19012
(
2011
).
224.
C.
Templin
,
R.
Zweigerdt
,
K.
Schwanke
,
R.
Olmer
,
J.-R.
Ghadri
,
M. Y.
Emmert
,
E.
Müller
,
S. M.
Küest
,
S.
Cohrs
,
R.
Schibli
,
P.
Kronen
,
M.
Hilbe
,
A.
Reinisch
,
D.
Strunk
,
A.
Haverich
,
S.
Hoerstrup
,
T. F.
Lüscher
,
P. A.
Kaufmann
,
U.
Landmesser
, and
U.
Martin
, “
Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction
,”
Circulation
126
,
430
439
(
2012
).
225.
J. J. H.
Chong
,
X.
Yang
,
C. W.
Don
,
E.
Minami
,
Y.-W.
Liu
,
J. J.
Weyers
,
W. M.
Mahoney
,
B.
Van Biber
,
S. M.
Cook
,
N. J.
Palpant
,
J. A.
Gantz
,
J. A.
Fugate
,
V.
Muskheli
,
G. M.
Gough
,
K. W.
Vogel
,
C. A.
Astley
,
C. E.
Hotchkiss
,
A.
Baldessari
,
L.
Pabon
,
H.
Reinecke
,
E. A.
Gill
,
V.
Nelson
,
H.-P.
Kiem
,
M. A.
Laflamme
, and
C. E.
Murry
, “
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
,”
Nature
510
,
273
277
(
2014
).
226.
Y.
Shiba
,
S.
Fernandes
,
W.-Z.
Zhu
,
D.
Filice
,
V.
Muskheli
,
J.
Kim
,
N. J.
Palpant
,
J.
Gantz
,
K. W.
Moyes
,
H.
Reinecke
,
B.
Van Biber
,
T.
Dardas
,
J. L.
Mignone
,
A.
Izawa
,
R.
Hanna
,
M.
Viswanathan
,
J. D.
Gold
,
M. I.
Kotlikoff
,
N.
Sarvazyan
,
M. W.
Kay
,
C. E.
Murry
, and
M. A.
Laflamme
, “
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts
,”
Nature
489
,
322
325
(
2012
).
227.
C. J.
Taylor
,
E. M.
Bolton
, and
J. A.
Bradley
, “
Immunological considerations for embryonic and induced pluripotent stem cell banking
,”
Philos. Trans. R. Soc. London B
366
,
2312
2322
(
2011
).
228.
V.
Volarevic
,
B. S.
Markovic
,
M.
Gazdic
,
A.
Volarevic
,
N.
Jovicic
,
N.
Arsenijevic
,
L.
Armstrong
,
V.
Djonov
,
M.
Lako
, and
M.
Stojkovic
, “
Ethical and safety issues of stem cell-based therapy
,”
Int. J. Med. Sci.
15
,
36
45
(
2018
).
229.
H.
Hentze
,
P. L.
Soong
,
S. T.
Wang
,
B. W.
Phillips
,
T. C.
Putti
, and
N. R.
Dunn
, “
Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies
,”
Stem Cell Res.
2
,
198
210
(
2009
).
230.
A.
Behfar
,
C.
Perez-Terzic
,
R. S.
Faustino
,
D. K.
Arrell
,
D. M.
Hodgson
,
S.
Yamada
,
M.
Puceat
,
N.
Niederländer
,
A. E.
Alekseev
,
L. V.
Zingman
, and
A.
Terzic
, “
Cardiopoietic programming of embryonic stem cells for tumor-free heart repair
,”
J. Exp. Med.
204
,
405
420
(
2007
).
231.
A.
Oikonomopoulos
,
T.
Kitani
, and
J. C.
Wu
, “
pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: Progress and hurdles for clinical translation
,”
Mol. Ther.
26
,
1624
1634
(
2018
).
232.
S.
Tohyama
and
K.
Fukuda
, “
Future treatment of heart failure using human iPSC-derived cardiomyocytes
,” in
Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology
, edited by
T.
Nakanishi
,
R. R.
Markwald
,
H. S.
Baldwin
,
B. B.
Keller
,
D.
Srivastava
, and
H.
Yamagishi
(
Springer
,
Tokyo
,
2016
).
233.
L.
Citro
,
S.
Naidu
,
F.
Hassan
,
M. L.
Kuppusamy
,
P.
Kuppusamy
,
M. G.
Angelos
, and
M.
Khan
, “
Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction
,”
PLOS ONE
9
,
e116281
(
2014
).
234.
M.
Kawamura
,
S.
Miyagawa
,
K.
Miki
,
A.
Saito
,
S.
Fukushima
,
T.
Higuchi
,
T.
Kawamura
,
T.
Kuratani
,
T.
Daimon
,
T.
Shimizu
,
T.
Okano
, and
Y.
Sawa
, “
Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model
,”
Circulation
126
,
S29
S37
(
2012
).
235.
Y.
Shiba
,
T.
Gomibuchi
,
T.
Seto
,
Y.
Wada
,
H.
Ichimura
,
Y.
Tanaka
,
T.
Ogasawara
,
K.
Okada
,
N.
Shiba
,
K.
Sakamoto
,
D.
Ido
,
T.
Shiina
,
M.
Ohkura
,
J.
Nakai
,
N.
Uno
,
Y.
Kazuki
,
M.
Oshimura
,
I.
Minami
, and
U.
Ikeda
, “
Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts
,”
Nature
538
,
388
391
(
2016
).
236.
S. S.
Parikh
,
D. J.
Blackwell
,
N.
Gomez-Hurtado
,
M.
Frisk
,
L.
Wang
,
K.
Kim
,
C. P.
Dahl
,
A.
Fiane
,
T.
Tønnessen
,
D. O.
Kryshtal
,
W. E.
Louch
, and
B. C.
Knollmann
, “
Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell derived cardiomyocytes
,”
Circ. Res.
121
,
1323
1330
(
2017
).
237.
B.
Lin
,
X.
Lin
,
M.
Stachel
,
E.
Wang
,
Y.
Luo
,
J.
Lader
,
X.
Sun
,
M.
Delmar
, and
L.
Bu
, “
Culture in glucose-depleted medium supplemented with fatty acid and 3,3′,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes
,”
Front. Endocrinol.
8
,
253
(
2017
).
238.
X.
Yang
,
M. L.
Rodriguez
,
A.
Leonard
,
L.
Sun
,
K. A.
Fischer
,
Y.
Wang
,
J.
Ritterhoff
,
L.
Zhao
,
S. C.
Kolwicz
,
L.
Pabon
,
H.
Reinecke
,
N. J.
Sniadecki
,
R.
Tian
,
H.
Ruohola-Baker
,
H.
Xu
, and
C. E.
Murry
, “
Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells
,”
Stem Cell Rep.
13
,
657
668
(
2019
).
239.
T.
Boudou
,
W. R.
Legant
,
A.
Mu
,
M. A.
Borochin
,
N.
Thavandiran
,
M.
Radisic
,
P. W.
Zandstra
,
J. A.
Epstein
,
K. B.
Margulies
, and
C. S.
Chen
, “
A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues
,”
Tissue Eng., Part A
18
,
910
919
(
2012
).
240.
R.
Ma
,
J.
Liang
,
W.
Huang
,
L.
Guo
,
W.
Cai
,
L.
Wang
,
C.
Paul
,
H.-T.
Yang
,
H. W.
Kim
, and
Y.
Wang
, “
Electrical stimulation enhances cardiac differentiation of human induced pluripotent stem cells for myocardial infarction therapy
,”
Antioxid. Redox Signaling
28
,
371
384
(
2018
).
241.
S. P.
Sheehy
,
A.
Grosberg
, and
K. K.
Parker
, “
The contribution of cellular mechanotransduction to cardiomyocyte form and function
,”
Biomech. Model. Mechanobiol.
11
,
1227
1239
(
2012
).
242.
S. S.
Nunes
,
J. W.
Miklas
,
J.
Liu
,
R.
Aschar-Sobbi
,
Y.
Xiao
,
B.
Zhang
,
J.
Jiang
,
S.
Masse
,
M.
Gagliardi
,
A.
Hsieh
,
N.
Thavandiran
,
M. A.
Laflamme
,
K.
Nanthakumar
,
G.
Gross
,
P. H.
Backx
,
G.
Keller
, and
M.
Radisic
, “
Biowire: A new platform for maturation of human pluripotent stem cell derived cardiomyocytes
,”
Nat. Methods
10
,
781
787
(
2013
).
243.
J.-L.
Ruan
,
N. L.
Tulloch
,
M. V.
Razumova
,
M.
Saiget
,
V.
Muskheli
,
L.
Pabon
,
H.
Reinecke
,
M.
Regnier
, and
C. E.
Murry
, “
Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue
,”
Circulation
134
,
1557
1567
(
2016
).
244.
H. T. H.
Au
,
B.
Cui
,
Z. E.
Chu
,
T.
Veres
, and
M.
Radisic
, “
Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes
,”
Lab Chip
9
,
564
575
(
2009
).
245.
M.
Natsumeda
,
V.
Florea
,
A. C.
Rieger
,
B. A.
Tompkins
,
M. N.
Banerjee
,
S.
Golpanian
,
J.
Fritsch
,
A. M.
Landin
,
N. D.
Kashikar
,
V.
Karantalis
,
V. Y.
Loescher
,
K. E.
Hatzistergos
,
L.
Bagno
,
C.
Sanina
,
M.
Mushtaq
,
J.
Rodriguez
,
M.
Rosado
,
A.
Wolf
,
K.
Collon
,
L.
Vincent
,
A. J.
Kanelidis
,
I. H.
Schulman
,
R.
Mitrani
,
A. W.
Heldman
,
W.
Balkan
, and
J. M.
Hare
, “
A combination of allogeneic stem cells promotes cardiac regeneration
,”
J. Am. Coll. Cardiol.
70
,
2504
2515
(
2017
).
246.
P.
Huang
,
L.
Wang
,
Q.
Li
,
J.
Xu
,
J.
Xu
,
Y.
Xiong
,
G.
Chen
,
H.
Qian
,
C.
Jin
,
Y.
Yu
,
J.
Liu
,
L.
Qian
, and
Y.
Yang
, “
Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance
,”
Stem Cell Res. Ther.
10
,
300
(
2019
).
247.
P.
Menasché
, “
Cardiac cell therapy: Current status, challenges and perspectives
,”
Arch. Cardiovasc. Dis.
113
,
285
292
(
2020
).
248.
R. J.
Vagnozzi
,
M.
Maillet
,
M. A.
Sargent
,
H.
Khalil
,
A. K. Z.
Johansen
,
J. A.
Schwanekamp
,
A. J.
York
,
V.
Huang
,
M.
Nahrendorf
,
S.
Sadayappan
, and
J. D.
Molkentin
, “
An acute immune response underlies the benefit of cardiac stem cell therapy
,”
Nature
577
,
405
409
(
2020
).
249.
T.
Thum
,
J.
Bauersachs
,
P. A.
Poole-Wilson
,
H.-D.
Volk
, and
S. D.
Anker
, “
The dying stem cell hypothesis: Immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle
,”
J. Am. Coll. Cardiol.
46
,
1799
1802
(
2005
).
250.
B.
Liu
,
B. W.
Lee
,
K.
Nakanishi
,
A.
Villasante
,
R.
Williamson
,
J.
Metz
,
J.
Kim
,
M.
Kanai
,
L.
Bi
,
K.
Brown
,
G.
Di Paolo
,
S.
Homma
,
P. A.
Sims
,
V. K.
Topkara
, and
G.
Vunjak-Novakovic
, “
Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells
,”
Nat. Biomed. Eng.
2
,
293
303
(
2018
).
251.
M.
Yáñez-Mó
,
P. R.-M.
Siljander
,
Z.
Andreu
,
A.
Bedina Zavec
,
F. E.
Borràs
,
E. I.
Buzas
,
K.
Buzas
,
E.
Casal
,
F.
Cappello
,
J.
Carvalho
,
E.
Colás
,
A.
Cordeiro-da Silva
,
S.
Fais
,
J. M.
Falcon-Perez
,
I. M.
Ghobrial
,
B.
Giebel
,
M.
Gimona
,
M.
Graner
,
I.
Gursel
,
M.
Gursel
,
N. H. H.
Heegaard
,
A.
Hendrix
,
P.
Kierulf
,
K.
Kokubun
,
M.
Kosanovic
,
V.
Kralj-Iglic
,
E.-M.
Krämer-Albers
,
S.
Laitinen
,
C.
Lässer
,
T.
Lener
,
E.
Ligeti
,
A.
Linē
,
G.
Lipps
,
A.
Llorente
,
J.
Lötvall
,
M.
Manček-Keber
,
A.
Marcilla
,
M.
Mittelbrunn
,
I.
Nazarenko
,
E. N. M.
Nolte-'t Hoen
,
T. A.
Nyman
,
L.
O'Driscoll
,
M.
Olivan
,
C.
Oliveira
,
É.
Pállinger
,
H. A.
del Portillo
,
J.
Reventós
,
M.
Rigau
,
E.
Rohde
,
M.
Sammar
,
F.
Sánchez-Madrid
,
N.
Santarém
,
K.
Schallmoser
,
M.
Stampe Ostenfeld
,
W.
Stoorvogel
,
R.
Stukelj
,
S. G.
Van der Grein
,
M. H.
Vasconcelos
,
M. H. M.
Wauben
, and
O. D.
Wever
, “
Biological properties of extracellular vesicles and their physiological functions
,”
J. Extracell. Vesicles
4
,
27066
(
2015
).
252.
D.
Zhang
,
I. Y.
Shadrin
,
J.
Lam
,
H.-Q.
Xian
,
H. R.
Snodgrass
, and
N.
Bursac
, “
Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes
,”
Biomaterials
34
,
5813
5820
(
2013
).
253.
K.
Huang
,
E. W.
Ozpinar
,
T.
Su
,
J.
Tang
,
D.
Shen
,
L.
Qiao
,
S.
Hu
,
Z.
Li
,
H.
Liang
,
K.
Mathews
,
V.
Scharf
,
D. O.
Freytes
, and
K.
Cheng
, “
An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs
,”
Sci. Transl. Med.
12
,
eaat9683
(
2020
).
254.
T.
Sadahiro
and
M.
Ieda
, “
Direct cardiac reprogramming for cardiovascular regeneration
,”
Keio J. Med.
69
,
49
(
2020
).
255.
N.
Muraoka
 et al., “
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
,”
EMBO J.
33
,
1565
1581
(
2014
).
256.
T. M.
Jayawardena
,
E. A.
Finch
,
L.
Zhang
,
H.
Zhang
,
C. P.
Hodgkinson
,
R. E.
Pratt
,
P. B.
Rosenberg
,
M.
Mirotsou
, and
V. J.
Dzau
, “
MicroRNA induced cardiac reprogramming in vivo
,”
Circu. Res.
116
,
418
424
(
2015
).
257.
M.
Abad
,
H.
Hashimoto
,
H.
Zhou
,
M. G.
Morales
,
B.
Chen
,
R.
Bassel-Duby
, and
E. N.
Olson
, “
Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity
,”
Stem Cell Rep.
8
,
548
560
(
2017
).
258.
H.
Yamakawa
,
N.
Muraoka
,
K.
Miyamoto
,
T.
Sadahiro
,
M.
Isomi
,
S.
Haginiwa
,
H.
Kojima
,
T.
Umei
,
M.
Akiyama
,
Y.
Kuishi
,
J.
Kurokawa
,
T.
Furukawa
,
K.
Fukuda
, and
M.
Ieda
, “
Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions
,”
Stem Cell Rep.
5
,
1128
1142
(
2015
).
259.
Y.
Zhou
,
L.
Wang
,
H. R.
Vaseghi
,
Z.
Liu
,
R.
Lu
,
S.
Alimohamadi
,
C.
Yin
,
J.-D.
Fu
,
G. G.
Wang
,
J.
Liu
, and
L.
Qian
, “
Bmi1 is a key epigenetic barrier to direct cardiac reprogramming
,”
Cell Stem Cell
18
,
382
395
(
2016
).
260.
Z.
Liu
,
O.
Chen
,
M.
Zheng
,
L.
Wang
,
Y.
Zhou
,
C.
Yin
,
J.
Liu
, and
L.
Qian
, “
Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes
,”
Stem Cell Res.
16
,
507
518
(
2016
).
261.
N. R.
Stone
,
C. A.
Gifford
,
R.
Thomas
,
K. J. B.
Pratt
,
K.
Samse-Knapp
,
T. M. A.
Mohamed
,
E. M.
Radzinsky
,
A.
Schricker
,
L.
Ye
,
P.
Yu
,
J. G.
van Bemmel
,
K. N.
Ivey
,
K. S.
Pollard
, and
D.
Srivastava
, “
Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming
,”
Cell Stem Cell
25
,
87
(
2019
).
262.
H.
Hashimoto
,
Z.
Wang
,
G. A.
Garry
,
V. S.
Malladi
,
G. A.
Botten
,
W.
Ye
,
H.
Zhou
,
M.
Osterwalder
,
D. E.
Dickel
,
A.
Visel
,
N.
Liu
,
R.
Bassel-Duby
, and
E. N.
Olson
, “
Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers
,”
Cell Stem Cell
25
,
69
(
2019
).
263.
Y.
Li
,
S.
Dal-Pra
,
M.
Mirotsou
,
T. M.
Jayawardena
,
C. P.
Hodgkinson
,
N.
Bursac
, and
V. J.
Dzau
, “
Tissue-engineered three-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs
,”
Sci. Rep.
6
,
38815
(
2016
).
264.
S.
Kurotsu
,
T.
Sadahiro
,
R.
Fujita
,
H.
Tani
,
H.
Yamakawa
,
F.
Tamura
,
M.
Isomi
,
H.
Kojima
,
Y.
Yamada
,
Y.
Abe
,
Y.
Murakata
,
T.
Akiyama
,
N.
Muraoka
,
I.
Harada
,
T.
Suzuki
,
K.
Fukuda
, and
M.
Ieda
, “
Soft matrix promotes cardiac reprogramming via inhibition of YAP/TAZ and suppression of fibroblast signatures
,”
Stem Cell Rep.
15
,
612
628
(
2020
).
265.
S. F.
Badylak
,
D. O.
Freytes
, and
T. W.
Gilbert
, “
Extracellular matrix as a biological scaffold material: Structure and function
,”
Acta Biomater.
5
,
1
13
(
2009
).
266.
M.
Arnal-Pastor
,
J. C.
Chachques
,
M. M.
Pradas
, and
A.
Vallés-Lluch
, “
Biomaterials for cardiac tissue engineering
,” in
Regenerative Medicine and Tissue Engineering
(
IntechOpen
,
2013
).
267.
K. Y.
Ye
and
L. D.
Black
, “
Strategies for Tissue engineering cardiac constructs to affect functional repair following myocardial infarction
,”
J. Cardiovasc. Transl. Res.
4
,
575
591
(
2011
).
268.
B.
Peña
,
S.
Jett
,
T. J.
Rowland
,
M. R. G.
Taylor
,
L.
Mestroni
,
M.
Laughter
, and
D.
Park
, “
Injectable hydrogels for cardiac tissue engineering
,”
Macromol. Biosci.
18
,
e1800079
(
2018
).
269.
J. L.
Ungerleider
,
T. D.
Johnson
,
N.
Rao
, and
K. L.
Christman
, “
Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle
,”
Methods
84
,
53
59
(
2015
).
270.
Y.
Efraim
,
H.
Sarig
,
N.
Cohen Anavy
,
U.
Sarig
,
E.
de Berardinis
,
S.-Y.
Chaw
,
M.
Krishnamoorthi
,
J.
Kalifa
,
H.
Bogireddi
,
T. V.
Duc
,
T.
Kofidis
,
L.
Baruch
,
F. Y. C.
Boey
,
S. S.
Venkatraman
, and
M.
Machluf
, “
Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction
,”
Acta Biomater.
50
,
220
233
(
2017
).
271.
S. B.
Seif-Naraghi
,
J. M.
Singelyn
,
M. A.
Salvatore
,
K. G.
Osborn
,
J. J.
Wang
,
U.
Sampat
,
O. L.
Kwan
,
G. M.
Strachan
,
J.
Wong
,
P. J.
Schup-Magoffin
,
R. L.
Braden
,
K.
Bartels
,
J. A.
DeQuach
,
M.
Preul
,
A. M.
Kinsey
,
A. N.
DeMaria
,
N.
Dib
, and
K. L.
Christman
, “
Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction
,”
Sci. Transl. Med.
5
,
173ra25
(
2013
).
272.
J.
Yokoyama
,
S.
Miyagawa
,
T.
Akagi
,
M.
Akashi
, and
Y.
Sawa
, “
Human induced pluripotent stem cell-derived three-dimensional cardiomyocyte tissues ameliorate the rat ischemic myocardium by remodeling the extracellular matrix and cardiac protein phenotype
,”
PLOS ONE
16
,
e0245571
(
2021
).
273.
E.
Bassat
,
Y. E.
Mutlak
,
A.
Genzelinakh
,
I. Y.
Shadrin
,
K.
Baruch Umansky
,
O.
Yifa
,
D.
Kain
,
D.
Rajchman
,
J.
Leach
,
D.
Riabov Bassat
,
Y.
Udi
,
R.
Sarig
,
I.
Sagi
,
J. F.
Martin
,
N.
Bursac
,
S.
Cohen
, and
E.
Tzahor
, “
The extracellular matrix protein agrin promotes heart regeneration in mice
,”
Nature
547
,
179
184
(
2017
).
274.
A.
Baehr
,
K. B.
Umansky
,
E.
Bassat
,
V.
Jurisch
,
K.
Klett
,
T.
Bozoglu
,
N.
Hornaschewitz
,
O.
Solyanik
,
D.
Kain
,
B.
Ferraro
,
R.
Cohen-Rabi
,
M.
Krane
,
C.
Cyran
,
O.
Soehnlein
,
K. L.
Laugwitz
,
R.
Hinkel
,
C.
Kupatt
, and
E.
Tzahor
, “
Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs
,”
Circulation
142
,
868
881
(
2020
).
275.
B.
Kühn
,
F.
del Monte
,
R. J.
Hajjar
,
Y.-S.
Chang
,
D.
Lebeche
,
S.
Arab
, and
M. T.
Keating
, “
Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
,”
Nat. Med.
13
,
962
969
(
2007
).
276.
Q. A.
Majid
,
A. T. R.
Fricker
,
D. A.
Gregory
,
N.
Davidenko
,
O.
Hernandez Cruz
,
R. J.
Jabbour
,
T. J.
Owen
,
P.
Basnett
,
B.
Lukasiewicz
,
M.
Stevens
,
S.
Best
,
R.
Cameron
,
S.
Sinha
,
S. E.
Harding
, and
I.
Roy
, “
Natural biomaterials for cardiac tissue engineering: A highly biocompatible solution
,”
Front. Cardiovasc. Med.
7
,
554597
(
2020
).
277.
S.
Trombino
,
F.
Curcio
,
R.
Cassano
,
M.
Curcio
,
G.
Cirillo
, and
F.
Iemma
, “
Polymeric biomaterials for the treatment of cardiac post-infarction injuries
,”
Pharmaceutics
13
,
1038
(
2021
).
278.
H.
Esmaeili
,
A.
Patino-Guerrero
,
M.
Hasany
,
M. O.
Ansari
,
A.
Memic
,
A.
Dolatshahi-Pirouz
, and
M.
Nikkhah
, “
Electroconductive biomaterials for cardiac tissue engineering
,”
Acta Biomater.
139
,
118
140
(
2022
).
279.
A.
Fu
,
Y.
Yang
,
J.
Wu
,
S.-H.
Li
,
Y.
Fan
,
T. M.
Yau
, and
R.-K.
Li
, “
Bio-conductive polymers for treating myocardial conductive defects: long-term efficacy study
,”
Adv. Healthcare Mater.
11
,
2101838
(
2022
).
280.
S. R.
Shin
,
S. M.
Jung
,
M.
Zalabany
,
K.
Kim
,
P.
Zorlutuna
,
S.
bok Kim
,
M.
Nikkhah
,
M.
Khabiry
,
M.
Azize
,
J.
Kong
,
K.
Wan
,
T.
Palacios
,
M. R.
Dokmeci
,
H.
Bae
,
X.
Tang
, and
A.
Khademhosseini
, “
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
,”
ACS Nano
7
,
2369
2380
(
2013
).
281.
L.
Scott
,
I.
Jurewicz
,
K.
Jeevaratnam
, and
R.
Lewis
, “
Carbon nanotube-based scaffolds for cardiac tissue engineering—Systematic review and narrative synthesis
,”
Bioengineering
8
,
80
(
2021
).
282.
P.
Hitscherich
,
A.
Aphale
,
R.
Gordan
,
R.
Whitaker
,
P.
Singh
,
L.
Xie
,
P.
Patra
, and
E. J.
Lee
, “
Electroactive graphene composite scaffolds for cardiac tissue engineering: Electroactive graphene composite scaffolds for cardiac tissue engineering
,”
J. Biomed. Mater. Res., Part A
106
,
2923
2933
(
2018
).
283.
L.
Zhao
, “
A novel graphene oxide polymer gel platform for cardiac tissue engineering application
,”
3 Biotech
9
,
401
(
2019
).
284.