With a kind of magnetism, the human retina draws the eye of neuroscientist and physicist alike. It is attractive as a self-organizing system, which forms as a part of the central nervous system via biochemical and mechanical cues. The retina is also intriguing as an electro-optical device, converting photons into voltages to perform on-the-fly filtering before the signals are sent to our brain. Here, we consider how the advent of stem cell derived in vitro analogs of the retina, termed retina organoids, opens up an exploration of the interplay between optics, electrics, and mechanics in a complex neuronal network, all in a Petri dish. This review presents state-of-the-art retina organoid protocols by emphasizing links to the biochemical and mechanical signals of in vivo retinogenesis. Electrophysiological recording of active signal processing becomes possible as retina organoids generate light sensitive and synaptically connected photoreceptors. Experimental biophysical tools provide data to steer the development of mathematical models operating at different levels of coarse-graining. In concert, they provide a means to study how mechanical factors guide retina self-assembly. In turn, this understanding informs the engineering of mechanical signals required to tailor the growth of neuronal network morphology. Tackling the complex developmental and computational processes in the retina requires an interdisciplinary endeavor combining experiment and theory, physics, and biology. The reward is enticing: in the next few years, retina organoids could offer a glimpse inside the machinery of simultaneous cellular self-assembly and signal processing, all in an in vitro setting.

1.
P.
Tsonis
,
Animal Models in Eye Research
, 1st ed. (
Academic Press
,
2008
).
2.
H.
Clevers
, “
Modeling development and disease with organoids
,”
Cell
165
(
7
),
1586
1597
(
2016
).
3.
J.
Kim
,
B.-K.
Koo
, and
J. A.
Knoblich
, “
Human organoids: Model systems for human biology and medicine
,”
Nat. Rev. Mol. Cell Biol.
21
(
10
),
571
584
(
2020
).
4.
S.
Vianello
and
M. P.
Lutolf
, “
Understanding the mechanobiology of early mammalian development through bioengineered models
,”
Dev. Cell
48
(
6
),
751
763
(
2019
).
5.
G.
Rossi
,
A.
Manfrin
, and
M. P.
Lutolf
, “
Progress and potential in organoid research
,”
Nat. Rev. Genet.
19
(
11
),
671
687
(
2018
).
6.
M.
Eiraku
,
N.
Takata
,
H.
Ishibashi
,
M.
Kawada
,
E.
Sakakura
,
S.
Okuda
,
K.
Sekiguchi
,
T.
Adachi
, and
Y.
Sasai
, “
Self-organizing optic-cup morphogenesis in three-dimensional culture
,”
Nature
472
(
7341
),
51
56
(
2011
).
7.
T.
Nakano
,
S.
Ando
,
N.
Takata
,
M.
Kawada
,
K.
Muguruma
,
K.
Sekiguchi
,
K.
Saito
,
S.
Yonemura
,
M.
Eiraku
, and
Y.
Sasai
, “
Self-formation of optic cups and storable stratified neural retina from human ESCs
,”
Cell Stem Cell
10
(
6
),
771
785
(
2012
).
8.
C. S.
Cowan
,
M.
Renner
,
M.
De Gennaro
,
B.
Gross-Scherf
,
D.
Goldblum
,
Y.
Hou
,
M.
Munz
,
T. M.
Rodrigues
,
J.
Krol
,
T.
Szikra
,
R.
Cuttat
,
A.
Waldt
,
P.
Papasaikas
,
R.
Diggelmann
,
C. P.
Patino-Alvarez
,
P.
Galliker
,
S. E.
Spirig
,
D.
Pavlinic
,
N.
Gerber-Hollbach
,
S.
Schuierer
,
A.
Srdanovic
,
M.
Balogh
,
R.
Panero
,
A.
Kusnyerik
,
A.
Szabo
,
M. B.
Stadler
,
S.
Orgül
,
S.
Picelli
,
P. W.
Hasler
,
A.
Hierlemann
,
H. P. N.
Scholl
,
G.
Roma
,
F.
Nigsch
, and
B.
Roska
, “
Cell types of the human retina and its organoids at single-cell resolution
,”
Cell
182
(
6
),
1623
1640
(
2020
).
9.
E.
Gabriel
,
W.
Albanna
,
G.
Pasquini
,
A.
Ramani
,
N.
Josipovic
,
A.
Mariappan
,
F.
Schinzel
,
C. M.
Karch
,
G.
Bao
,
M.
Gottardo
,
A. A.
Suren
,
J.
Hescheler
,
K.
Nagel-Wolfrum
,
V.
Persico
,
S. O.
Rizzoli
,
J.
Altmüller
,
M. G.
Riparbelli
,
G.
Callaini
,
O.
Goureau
,
A.
Papantonis
,
V.
Busskamp
,
T.
Schneider
, and
J.
Gopalakrishnan
, “
Human brain organoids assemble functionally integrated bilateral optic vesicles
,”
Cell Stem Cell
28
(
10
),
1740
1757
(
2021
).
10.
S.
Llonch
,
M.
Carido
, and
M.
Ader
, “
Organoid technology for retinal repair
,”
Dev. Biol.
433
(
2
),
132
143
(
2018
).
11.
D.
Hallam
,
G.
Hilgen
,
B.
Dorgau
,
L.
Zhu
,
M.
Yu
,
S.
Bojic
,
P.
Hewitt
,
M.
Schmitt
,
M.
Uteng
,
S.
Kustermann
,
D.
Steel
,
M.
Nicholds
,
R.
Thomas
,
A.
Treumann
,
A.
Porter
,
E.
Sernagor
,
L.
Armstrong
, and
M.
Lako
, “
Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency
,”
Stem Cells
36
(
10
),
1535
1551
(
2018
).
12.
G.
Quadrato
,
T.
Nguyen
,
E. Z.
Macosko
,
J. L.
Sherwood
,
S.
Min Yang
,
D. R.
Berger
,
N.
Maria
,
J.
Scholvin
,
M.
Goldman
,
J. P.
Kinney
,
E. S.
Boyden
,
J. W.
Lichtman
,
Z. M.
Williams
,
S. A.
McCarroll
, and
P.
Arlotta
, “
Cell diversity and network dynamics in photosensitive human brain organoids
,”
Nature
545
(
7652
),
48
53
(
2017
).
13.
B.
Dorgau
,
M.
Felemban
,
G.
Hilgen
,
M.
Kiening
,
D.
Zerti
,
N. C.
Hunt
,
M.
Doherty
,
P.
Whitfield
,
D.
Hallam
,
K.
White
,
Y.
Ding
,
N.
Krasnogor
,
J.
Al-Aama
,
H. Z.
Asfour
,
E.
Sernagor
, and
M.
Lako
, “
Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids
,”
Biomaterials
199
,
63
75
(
2019
).
14.
K.
Franze
, “
The mechanical control of nervous system development
,”
Development
140
(
15
),
3069
3077
(
2013
).
15.
J. K.
Mueller
and
W. J.
Tyler
, “
A quantitative overview of biophysical forces impinging on neural function
,”
Phys. Biol.
11
(
5
),
051001
(
2014
).
16.
G.
Gangatharan
,
S.
Schneider-Maunoury
, and
M. A.
Breau
, “
Role of mechanical cues in shaping neuronal morphology and connectivity
,”
Biol. Cell
110
(
6
),
125
136
(
2018
).
17.
S.
Siechen
,
S.
Yang
,
A.
Chiba
, and
T.
Saif
, “
Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
31
),
12611
(
2009
).
18.
E. H.
Barriga
,
K.
Franze
,
G.
Charras
, and
R.
Mayor
, “
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo
,”
Nature
554
(
7693
),
523
527
(
2018
).
19.
D. E.
Koser
,
A. J.
Thompson
,
S. K.
Foster
,
A.
Dwivedy
,
E. K.
Pillai
,
G. K.
Sheridan
,
H.
Svoboda
,
M.
Viana
,
L. F.
Costa
,
J.
Guck
,
C. E.
Holt
, and
K.
Franze
, “
Mechanosensing is critical for axon growth in the developing brain
,”
Nat. Neurosci.
19
(
12
),
1592
1598
(
2016
).
20.
A. J.
Thompson
,
E. K.
Pillai
,
I. B.
Dimov
,
S. K.
Foster
,
C. E.
Holt
, and
K.
Franze
, “
Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain
,”
eLife
8
,
e39356
(
2019
).
21.
T.
Sharf
,
T.
van der Molen
,
S. M. K.
Glasauer
,
E.
Guzman
,
A. P.
Buccino
,
G.
Luna
,
Z.
Cheng
,
M.
Audouard
,
K. G.
Ranasinghe
,
K.
Kudo
,
S. S.
Nagarajan
,
K. R.
Tovar
,
L. R.
Petzold
,
A.
Hierlemann
,
P. K.
Hansma
, and
K. S.
Kosik
, “
Human brain organoid networks
,” BioRxiv (
2021
).
22.
M. A.
Lancaster
and
M.
Huch
, “
Disease modelling in human organoids
,”
Dis. Models Mech.
12
(
7
),
dmm039347
(
2019
).
23.
M.
O'Hara-Wright
and
A.
Gonzalez-Cordero
, “
Retinal organoids: A window into human retinal development
,”
Development
147
(
24
),
dev189746
(
2020
).
24.
M. A.
Casey
,
S.
Lusk
, and
K. M.
Kwan
, “
Build me up optic cup: Intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis
,”
Dev. Biol.
476
,
128
136
(
2021
).
25.
S.
Kondo
and
T.
Miura
, “
Reaction-diffusion model as a framework for understanding biological pattern formation
,”
Science
329
(
5999
),
1616
1620
(
2010
).
26.
E.
Hannezo
and
C. P.
Heisenberg
, “
Mechanochemical feedback loops in development and disease
,”
Cell
178
(
1
),
12
25
(
2019
).
27.
NIH, National Eye Institute
, see https://www.nei.nih.gov/about/goals-and-accomplishments/nei-research-initiatives/3-d-retina-organoid-challenge-3-d-roc for “
3D Retina Organoid Challenge
” (
2021
).
28.
C. M.
Bell
,
D. J.
Zack
, and
C. A.
Berlinicke
, “
Human organoids for the study of retinal development and disease
,”
Annu. Rev. Vision Sci.
6
,
91
114
(
2020
).
29.
A.
Artero Castro
,
F. J.
Rodriguez Jimenez
,
P.
Jendelova
, and
S.
Erceg
, “
Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: Concise review
,”
Stem Cells
37
(
12
),
1496
1504
(
2019
).
30.
K.
Kruczek
and
A.
Swaroop
, “
Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies
,”
Stem Cells
38
(
10
),
1206
1215
(
2020
).
31.
R.
Sinn
and
J.
Wittbrodt
, “
An eye on eye development
,”
Mech. Dev.
130
(
6
),
347
358
(
2013
).
32.
R.
Quiring
,
U.
Walldorf
,
U.
Kloterand
, and
W. J.
Gehring
, “
Homology of the eyeless gene of drosophila to the small eye gene in mice and aniridia in humans
,”
Science
265
(
5173
),
785
789
(
1994
).
33.
P. H.
Mathers
,
A.
Grinberg
,
K. A.
Mahon
, and
M.
Jamrich
, “
The Rx homeobox gene is essential for vertebrate eye development
,”
Nature
387
(
6633
),
603
607
(
1997
).
34.
B.
Bosze
,
R. B.
Hufnagel
, and
N. L.
Brown
, in
Patterning and Cell Type Specification in the Developing CNS and PNS
, 2nd ed., edited by
J.
Rubenstein
,
P.
Rakic
,
B.
Chen
, and
K. Y.
Kwan
(
Academic Press
,
2020
), pp.
481
504
.
35.
S.
Reichman
,
A.
Slembrouck
,
G.
Gagliardi
,
A.
Chaffiol
,
A.
Terray
,
C.
Nanteau
,
A.
Potey
,
M.
Belle
,
O.
Rabesandratana
,
J.
Duebel
,
G.
Orieux
,
E. F.
Nandrot
,
J.-A.
Sahel
, and
O.
Goureau
, “
Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions
,”
Stem Cells
35
(
5
),
1176
1188
(
2017
).
36.
A.
Kuwahara
,
C.
Ozone
,
T.
Nakano
,
K.
Saito
,
M.
Eiraku
, and
Y.
Sasai
, “
Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue
,”
Nat. Commun.
6
(
1
),
6286
(
2015
).
37.
S. K.
Ohlemacher
,
C. L.
Iglesias
,
A.
Sridhar
,
D. M.
Gamm
, and
J. S.
Meyer
, “
Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells
,”
Curr. Protoc. Stem Cell Biol.
32
(
1
),
1H.8.1
1H.8.20
(
2015
).
38.
J. S.
Meyer
,
S. E.
Howden
,
K. A.
Wallace
,
A. D.
Verhoeven
,
L. S.
Wright
,
E. E.
Capowski
,
I.
Pinilla
,
J. M.
Martin
,
S.
Tian
,
R.
Stewart
,
B.
Pattnaik
,
J. A.
Thomson
, and
D. M.
Gamm
, “
Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment
,”
Stem Cells
29
(
8
),
1206
1218
(
2011
).
39.
X.
Zhong
,
C.
Gutierrez
,
T.
Xue
,
C.
Hampton
,
M. N.
Vergara
,
L. H.
Cao
,
A.
Peters
,
T. S.
Park
,
E. T.
Zambidis
,
J. S.
Meyer
,
D. M.
Gamm
,
K. W.
Yau
, and
M. V.
Canto-Soler
, “
Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs
,”
Nat. Commun.
5
,
4047
(
2014
).
40.
M.
Völkner
,
M.
Zschätzsch
,
M.
Rostovskaya
,
R. W.
Overall
,
V.
Busskamp
,
K.
Anastassiadis
, and
M. O.
Karl
, “
Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis
,”
Stem Cell Rep.
6
(
4
),
525
538
(
2016
).
41.
J. B.
Miesfeld
and
N. L.
Brown
, in
Current Topics in Developmental Biology
, edited by
D. M.
Wellik
(
Academic Press
,
2019
), Vol.
132
, pp.
351
393
.
42.
W.
Heavner
and
L.
Pevny
, “
Eye development and retinogenesis
,”
Cold Spring Harbor Perspect. Biol.
4
(
12
),
a008391
(
2012
).
43.
D.
ten Berge
,
W.
Koole
,
C.
Fuerer
,
M.
Fish
,
E.
Eroglu
, and
R.
Nusse
, “
WNT signaling mediates self-organization and axis formation in embryoid bodies
,”
Cell Stem Cell
3
(
5
),
508
518
(
2008
).
44.
E. E.
Capowski
,
L. S.
Wright
,
K.
Liang
,
M. J.
Phillips
,
K.
Wallace
,
A.
Petelinsek
,
A.
Hagstrom
,
I.
Pinilla
,
K.
Borys
,
J.
Lien
,
J. H.
Min
,
S.
Keles
,
J. A.
Thomson
, and
D. M.
Gamm
, “
Regulation of WNT signaling by VSX2 during optic vesicle patterning in human induced pluripotent stem cells
,”
Stem Cells
34
(
11
),
2625
2634
(
2016
).
45.
C. L.
Sigulinsky
,
E. S.
Green
,
A. M.
Clark
, and
E. M.
Levine
, “
Vsx2/Chx10 ensures the correct timing and magnitude of Hedgehog signaling in the mouse retina
,”
Dev. Biol.
317
(
2
),
560
575
(
2008
).
46.
E. E.
Capowski
,
K.
Samimi
,
S. J.
Mayerl
,
M. J.
Phillips
,
I.
Pinilla
,
S. E.
Howden
,
J.
Saha
,
A. D.
Jansen
,
K. L.
Edwards
,
L. D.
Jager
,
K.
Barlow
,
R.
Valiauga
,
Z.
Erlichman
,
A.
Hagstrom
,
D.
Sinha
,
V. M.
Sluch
,
X.
Chamling
,
D. J.
Zack
,
M. C.
Skala
, and
D. M.
Gamm
, “
Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines
,”
Development
146
(
1
),
dev171686
(
2019
).
47.
P.
Westenskow
,
S.
Piccolo
, and
S.
Fuhrmann
, “
β-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression
,”
Development
136
(
15
),
2505
2510
(
2009
).
48.
K. M.
Bumsted
and
C. J.
Barnstable
, “
Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse
,”
Invest. Ophthalmol. Vision Sci.
41
(
3
),
903
908
(
2000
). PMID: 10711712.
49.
N.
Tsukiji
,
D.
Nishihara
,
I.
Yajima
,
K.
Takeda
,
S.
Shibahara
, and
H.
Yamamoto
, “
Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE
,”
Dev. Biol.
326
(
2
),
335
346
(
2009
).
50.
D.
Hiler
,
X.
Chen
,
J.
Hazen
,
S.
Kupriyanov
,
P. A.
Carroll
,
C.
Qu
,
B.
Xu
,
D.
Johnson
,
L.
Griffiths
,
S.
Frase
,
A. R.
Rodriguez
,
G.
Martin
,
J.
Zhang
,
J.
Jeon
,
Y.
Fan
,
D.
Finkelstein
,
R. N.
Eisenman
,
K.
Baldwin
, and
M. A.
Dyer
, “
Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors
,”
Cell Stem Cell
17
(
1
),
101
115
(
2015
).
51.
C. B.
Mellough
,
J.
Collin
,
R.
Queen
,
G.
Hilgen
,
B.
Dorgau
,
D.
Zerti
,
M.
Felemban
,
K.
White
,
E.
Sernagor
, and
M.
Lako
, “
Systematic comparison of retinal organoid differentiation from human pluripotent stem cells reveals stage specific, cell line, and methodological differences
,”
Stem Cells Transl. Med.
8
(
7
),
694
706
(
2019
).
52.
J.
Eintracht
,
M.
Toms
, and
M.
Moosajee
, “
The use of induced pluripotent stem cells as a model for developmental eye disorders
,”
Front. Cell. Neurosci.
14
,
265
(
2020
).
53.
P.
Monnot
,
G.
Gangatharan
,
M.
Baraban
,
K.
Pottin
,
M.
Cabrera
,
I.
Bonnet
, and
M. A.
Breau
, “
Intertissue mechanical interactions shape the olfactory circuit in zebrafish
,”
EMBO Reports
2021,
e52963
.
54.
J.
Huang
,
R.
Rajagopal
,
Y.
Liu
,
L. K.
Dattilo
,
O.
Shaham
,
R.
Ashery-Padan
, and
D. C.
Beebe
, “
The mechanism of lens placode formation: A case of matrix-mediated morphogenesis
,”
Dev. Biol.
355
(
1
),
32
42
(
2011
).
55.
A.
Oltean
,
J.
Huang
,
D. C.
Beebe
, and
L. A.
Taber
, “
Tissue growth constrained by extracellular matrix drives invagination during optic cup morphogenesis
,”
Biomech. Model. Mechanobiol.
15
(
6
),
1405
1421
(
2016
).
56.
S.
Reichman
and
O.
Goureau
, “
Production of retinal cells from confluent human iPS cells
,”
Methods Mol. Biol.
1357
,
339
351
(
2016
).
57.
A.
Lowe
,
R.
Harris
,
P.
Bhansali
,
A.
Cvekl
, and
W.
Liu
, “
Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces mediate self-formation of a retinal organoid
,”
Stem Cell Rep.
6
(
5
),
743
756
(
2016
).
58.
H. Y.
Chen
,
K. D.
Kaya
,
L.
Dong
, and
A.
Swaroop
, “
Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation
,”
Mol. Vision
22
,
1077
1094
(
2016
).
59.
S.
Decembrini
,
U.
Koch
,
F.
Radtke
,
A.
Moulin
, and
Y.
Arsenijevic
, “
Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells
,”
Stem Cell Rep.
2
(
6
),
853
865
(
2014
).
60.
T.
Santos-Ferreira
,
M.
Völkner
,
O.
Borsch
,
J.
Haas
,
P.
Cimalla
,
P.
Vasudevan
,
P.
Carmeliet
,
D.
Corbeil
,
S.
Michalakis
,
E.
Koch
,
M. O.
Karl
, and
M.
Ader
, “
Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy
,”
Invest. Ophthalmol. Vis. Sci.
57
(
7
),
3509
3520
(
2016
).
61.
A.
Gonzalez-Cordero
,
E. L.
West
,
R. A.
Pearson
,
Y.
Duran
,
L. S.
Carvalho
,
C. J.
Chu
,
A.
Naeem
,
S. J. I.
Blackford
,
A.
Georgiadis
,
J.
Lakowski
,
M.
Hubank
,
A. J.
Smith
,
J. W. B.
Bainbridge
,
J. C.
Sowden
, and
R. R.
Ali
, “
Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina
,”
Nat. Biotechnol.
31
(
8
),
741
747
(
2013
).
62.
A. R.
Fattah
,
B.
Daza
,
G.
Rustandi
,
M.
Berrocal-Rubio
,
B.
Gorissen
,
S.
Poovathingal
,
K.
Davie
,
J.
Barrasa-Fano
,
M.
Cóndor
,
X.
Cao
,
D. H.
Rosenzweig
,
Y.
Lei
,
R.
Finnell
,
C.
Verfaillie
,
M.
Sampaolesi
,
P.
Dedecker
,
H.
Van Oosterwyck
,
S.
Aerts
, and
A.
Ranga
, “
Actuation enhances patterning in human neural tube organoids
,”
Nat. Commun.
12
(
1
),
3192
(
2021
).
63.
E.
Karzbrun
,
A. H.
Khankhel
,
H. C.
Megale
,
S. M. K.
Glasauer
,
Y.
Wyle
,
G.
Britton
,
A.
Warmflash
,
K. S.
Kosik
,
E. D.
Siggia
,
B. I.
Shraiman
, and
S. J.
Streichan
, “
Human neural tube morphogenesis in vitro by geometric constraints
,”
Nature
599
,
268
272
(
2021
).
64.
R.
Amini
,
M.
Rocha-Martins
, and
C.
Norden
, “
Neuronal migration and lamination in the vertebrate retina
,”
Front. Neurosci.
11
,
742
(
2018
).
65.
L. M.
Baye
and
B. A.
Link
, “
Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis
,”
J. Neurosci.
27
(
38
),
10143
10152
(
2007
).
66.
D.
Holmes
, “
Reconstructing the retina
,”
Nature
561
(
7721
),
S2
S3
(
2018
).
67.
P.
Lyu
,
T.
Hoang
,
C. P.
Santiago
,
E. D.
Thomas
,
A. E.
Timms
,
H.
Appel
,
M.
Gimmen
,
N.
Le
,
L.
Jiang
,
D. W.
Kim
,
S.
Chen
,
D.
Espinoza
,
A. E.
Telger
,
K.
Weir
,
B. S.
Clark
,
T. J.
Cherry
,
J.
Qian
, and
S.
Blackshaw
Gene regulatory networks controlling temporal patterning, neurogenesis, and cell fate specification in the mammalian retina
,”
Cell Rep.
37
(
7
),
109994
(
2021
).
68.
B. S.
Clark
,
G. L.
Stein-O'Brien
,
F.
Shiau
,
G. H.
Cannon
,
E.
Davis-Marcisak
,
T.
Sherman
,
C. P.
Santiago
,
T. V.
Hoang
,
F.
Rajaii
,
R. E.
James-Esposito
,
R. M.
Gronostajski
,
E. J.
Fertig
,
L. A.
Goff
, and
S.
Blackshaw
, “
Single-cell RNA-Seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification
,”
Neuron
102
(
6
),
1111
1126
(
2019
).
69.
J.
Elliott
,
C.
Jolicoeur
,
V.
Ramamurthy
, and
M.
Cayouette
, “
Ikaros confers early temporal competence to mouse retinal progenitor cells
,”
Neuron
60
(
1
),
26
39
(
2008
).
70.
Y.
Lu
,
F.
Shiau
,
W.
Yi
,
S.
Lu
,
Q.
Wu
,
J. D.
Pearson
,
A.
Kallman
,
S.
Zhong
,
T.
Hoang
,
Z.
Zuo
,
F.
Zhao
,
M.
Zhang
,
N.
Tsai
,
Y.
Zhuo
,
S.
He
,
J.
Zhang
,
G. L.
Stein-O'Brien
,
T. D.
Sherman
,
X.
Duan
,
E. J.
Fertig
,
L. A.
Goff
,
D. J.
Zack
,
J. T.
Handa
,
T.
Xue
,
R.
Bremner
,
S.
Blackshaw
,
X.
Wang
, and
B. S.
Clark
, “
Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development
,”
Dev. Cell
53
(
4
),
473
491
(
2020
).
71.
P.
Mattar
,
J.
Ericson
,
S.
Blackshaw
, and
M.
Cayouette
, “
A conserved regulatory logic controls temporal identity in mouse neural progenitors
,”
Neuron
85
(
3
),
497
504
(
2015
).
72.
A.
Javed
,
P.
Mattar
,
S.
Lu
,
K.
Kruczek
,
M.
Kloc
,
A.
Gonzalez-Cordero
,
R.
Bremner
,
R. R.
Ali
, and
M.
Cayouette
, “
Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina
,”
Development
147
(
18
),
dev188730
(
2020
).
73.
E. A.
Bassett
and
V. A.
Wallace
, “
Cell fate determination in the vertebrate retina
,”
Trends Neurosci.
35
(
9
),
565
573
(
2012
).
74.
C. L.
Cepko
,
C. P.
Austin
,
X.
Yang
,
M.
Alexiades
, and
D.
Ezzeddine
, “
Cell fate determination in the vertebrate retina
,”
Proc. Natl Acad. Sci. U. S. A.
93
(
2
),
589
595
(
1996
).
75.
A.
Javed
and
M.
Cayouette
, “
Temporal progression of retinal progenitor cell identity: Implications in cell replacement therapies
,”
Front Neural Circuits
11
,
105
(
2017
).
76.
J.
Malin
and
C.
Desplan
, “
Neural specification, targeting, and circuit formation during visual system assembly
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
28
),
e2101823118
(
2021
).
77.
J. R.
Sanes
and
S. L.
Zipursky
, “
Design principles of insect and vertebrate visual systems
,”
Neuron
66
(
1
),
15
36
(
2010
).
78.
K. D.
Kaya
,
H. Y.
Chen
,
M. J.
Brooks
,
R. A.
Kelley
,
H.
Shimada
,
K.
Nagashima
,
N.
de Val
,
C. T.
Drinnan
,
L.
Gieser
,
K.
Kruczek
,
S.
Erceg
,
T.
Li
,
D.
Lukovic
,
Y. K.
Adlakha
,
E.
Welby
, and
A.
Swaroop
, “
Transcriptome-based molecular staging of human stem cell-derived retinal organoids uncovers accelerated photoreceptor differentiation by 9-cis retinal
,”
Mol. Vision
25
,
663
678
(
2019
).
79.
L.
Wang
,
D.
Hiler
,
B.
Xu
,
I.
AlDiri
,
X.
Chen
,
X.
Zhou
,
L.
Griffiths
,
M.
Valentine
,
A.
Shirinifard
,
A.
Sablauer
,
S.
Thiagarajan
,
M.-E.
Barabas
,
J.
Zhang
,
D.
Johnson
,
S.
Frase
, and
M. A.
Dyer
, “
Retinal cell type DNA methylation and histone modifications predict reprogramming efficiency and retinogenesis in 3D organoid cultures
,”
Cell Rep.
22
(
10
),
2601
2614
(
2018
).
80.
V.
Chichagova
,
G.
Hilgen
,
A.
Ghareeb
,
M.
Georgiou
,
M.
Carter
,
E.
Sernagor
,
M.
Lako
, and
L.
Armstrong
, “
Human iPSC differentiation to retinal organoids in response to IGF1 and BMP4 activation is line- and method-dependent
,”
Stem Cells
38
(
2
),
195
201
(
2020
).
81.
K.
Achberger
,
C.
Probst
,
J.
Haderspeck
,
S.
Bolz
,
J.
Rogal
,
J.
Chuchuy
,
M.
Nikolova
,
V.
Cora
,
L.
Antkowiak
,
W.
Haq
,
N.
Shen
,
K.
Schenke-Layland
,
M.
Ueffing
,
S.
Liebau
, and
P.
Loskill
, “
Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform
,”
eLife
8
,
e46188
(
2019
).
82.
T.
Akhtar
,
H.
Xie
,
M. I.
Khan
,
H.
Zhao
,
J.
Bao
,
M.
Zhang
, and
T.
Xue
, “
Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium
,”
Stem Cell Res.
39
,
101491
(
2019
).
83.
D. H.
Hubel
and
T. N.
Wiesel
, “
Receptive fields of cells in straite cortex of very young, visually inexperienced kittens
,”
J. Neurophysiol.
26
,
994
1002
(
1963
).
84.
C. J.
Akerman
,
D.
Smyth
, and
I. D.
Thompson
, “
Visual experience before eye-opening and the development of the retinogeniculate pathway
,”
Neuron
36
(
5
),
869
879
(
2002
).
85.
S. M.
Sherman
and
P. D.
Spear
, “
Organization of visual pathways in normal and visually deprived cats
,”
Physiol. Rev.
62
(
2
),
738
855
(
1982
).
86.
K.
Franze
,
J.
Grosche
,
S. N.
Skatchkov
,
S.
Schinkinger
,
C.
Foja
,
D.
Schild
,
O.
Uckermann
,
K.
Travis
,
A.
Reichenbach
, and
J.
Guck
, “
Müller cells are living optical fibers in the vertebrate retina
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
20
),
8287
8292
(
2007
).
87.
M.
Kreysing
,
L.
Boyde
,
J.
Guck
, and
K. J.
Chalut
, “
Physical insight into light scattering by photoreceptor cell nuclei
,”
Opt. Lett.
35
(
15
),
2639
2641
(
2010
).
88.
I.
Solovei
,
M.
Kreysing
,
C.
Lanctôt
,
S.
Kösem
,
L.
Peichl
,
T.
Cremer
,
J.
Guck
, and
B.
Joffe
, “
Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution
,”
Cell
137
(
2
),
356
368
(
2009
).
89.
T.
Gollisch
and
M.
Meister
, “
Eye smarter than scientists believed: Neural computations in circuits of the retina
,”
Neuron
65
(
2
),
150
164
(
2010
).
90.
R. H.
Masland
, “
The neuronal organization of the retina
,”
Neuron
76
(
2
),
266
280
(
2012
).
91.
A.
Wertz
,
S.
Trenholm
,
K.
Yonehara
,
D.
Hillier
,
Z.
Raics
,
M.
Leinweber
,
G.
Szalay
,
A.
Ghanem
,
G.
Keller
,
B.
Rózsa
,
K.-K.
Conzelmann
, and
B.
Roska
, “
Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules
,”
Science
349
(
6243
),
70
74
(
2015
).
92.
T.
Guo
,
D.
Tsai
,
S.
Bai
,
J. W.
Morley
,
G. J.
Suaning
,
N. H.
Lovell
, and
S.
Dokos
, “
Understanding the retina: A review of computational models of the retina from the single cell to the network level
,”
Crit. Rev. Biomed. Eng.
42
(
5
),
419
436
(
2014
).
93.
E.
Real
,
H.
Asari
,
T.
Gollisch
, and
M.
Meister
, “
Neural circuit inference from function to structure
,”
Curr. Biol.
27
(
2
),
189
198
(
2017
).
94.
T.
Baden
,
P.
Berens
,
K.
Franke
,
M.
Roman Roson
,
M.
Bethge
, and
T.
Euler
, “
The functional diversity of retinal ganglion cells in the mouse
,”
Nature
529
(
7586
),
345
350
(
2016
).
95.
A. P.
Passaro
and
S. L.
Stice
, “
Electrophysiological analysis of brain organoids: Current approaches and advancements
,”
Front. Neurosci.
14
(
1405
),
622137
(
2021
).
96.
S. L.
Giandomenico
,
S. B.
Mierau
,
G. M.
Gibbons
,
L. M. D.
Wenger
,
L.
Masullo
,
T.
Sit
,
M.
Sutcliffe
,
J.
Boulanger
,
M.
Tripodi
,
E.
Derivery
,
O.
Paulsen
,
A.
Lakatos
, and
M. A.
Lancaster
, “
Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output
,”
Nat. Neurosci.
22
(
4
),
669
679
(
2019
).
97.
M.
Fathi
,
C. T.
Ross
, and
Z.
Hosseinzadeh
, “
Functional 3-dimensional retinal organoids: Technological progress and existing challenges
,”
Front. Neurosci.
15
(
432
),
668857
(
2021
).
98.
A. J.
Engler
,
S.
Sen
,
H. L.
Sweeney
, and
D. E.
Discher
, “
Matrix elasticity directs stem cell lineage specification
,”
Cell
126
(
4
),
677
689
(
2006
).
99.
S. E.
Murthy
,
A. E.
Dubin
, and
A.
Patapoutian
, “
Piezos thrive under pressure: Mechanically activated ion channels in health and disease
,”
Nat. Rev. Mol. Cell Biol.
18
(
12
),
771
783
(
2017
).
100.
H.
Abuwarda
and
M. M.
Pathak
, “
Mechanobiology of neural development
,”
Curr. Opin. Cell Biol.
66
,
104
111
(
2020
).
101.
C.
Llinares-Benadero
and
V.
Borrell
, “
Deconstructing cortical folding: Genetic, cellular and mechanical determinants
,”
Nat. Rev. Neurosci.
20
(
3
),
161
176
(
2019
).
102.
T.
Tallinen
,
J. Y.
Chung
,
J. S.
Biggins
, and
L.
Mahadevan
, “
Gyrification from constrained cortical expansion
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
35
),
12667
12672
(
2014
).
103.
T.
Tallinen
,
J. Y.
Chung
,
F.
Rousseau
,
N.
Girard
,
J.
Lefèvre
, and
L.
Mahadevan
, “
On the growth and form of cortical convolutions
,”
Nat. Phys.
12
(
6
),
588
593
(
2016
).
104.
L. A.
Flanagan
,
Y. E.
Ju
,
B.
Marg
,
M.
Osterfield
, and
P. A.
Janmey
, “
Neurite branching on deformable substrates
,”
Neuroreport
13
(
18
),
2411
2415
(
2002
).
105.
L.
He
,
G.
Si
,
J.
Huang
,
A. D. T.
Samuel
, and
N.
Perrimon
, “
Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel
,”
Nature
555
(
7694
),
103
106
(
2018
).
106.
Y.-C.
Lin
,
Y. R.
Guo
,
A.
Miyagi
,
J.
Levring
,
R.
MacKinnon
, and
S.
Scheuring
, “
Force-induced conformational changes in PIEZO1
,”
Nature
573
(
7773
),
230
234
(
2019
).
107.
B.
Coste
,
J.
Mathur
,
M.
Schmidt
,
T. J.
Earley
,
S.
Ranade
,
M. J.
Petrus
,
A. E.
Dubin
, and
A.
Patapoutian
, “
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
,”
Science
330
(
6000
),
55
60
(
2010
).
108.
W. W.
Ahmed
,
T. C.
Li
,
S. S.
Rubakhin
,
A.
Chiba
,
J. V.
Sweedler
, and
T. A.
Saif
, “
Mechanical tension modulates local and global vesicle dynamics in neurons
,”
Cellular Mol. Bioeng.
5
(
2
),
155
164
(
2012
).
109.
L.
De Groef
and
M. F.
Cordeiro
, “
Is the Eye an Extension of the Brain in Central Nervous System Disease?
,”
J. Ocular Pharmacol. Ther.
34
(
1–2
),
129
133
(
2017
).
110.
M.
Levin
, “
Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo
,”
Mol. Biol. Cell
25
(
24
),
3835
3850
(
2014
).
111.
V. P.
Pai
,
S.
Aw
,
T.
Shomrat
,
J. M.
Lemire
, and
M.
Levin
, “
Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis
,”
Developmenty
139
(
2
),
313
323
(
2012
).
112.
K.
Sugimura
,
P.-F.
Lenne
, and
F.
Graner
, “
Measuring forces and stresses in situ in living tissues
,”
Development
143
(
2
),
186
196
(
2016
).
113.
P.
Roca-Cusachs
,
V.
Conte
, and
X.
Trepat
, “
Quantifying forces in cell biology
,”
Nat. Cell Biol.
19
(
7
),
742
751
(
2017
).
114.
N. I.
Petridou
,
Z.
Spiró
, and
C.-P.
Heisenberg
, “
Multiscale force sensing in development
,”
Nat. Cell Biol.
19
(
6
),
581
588
(
2017
).
115.
N. M. E.
Ayad
,
N. M. E.
Ayad
,
S.
Kaushik
, and
V. M.
Weaver
, “
Tissue mechanics, an important regulator of development and disease
,”
Philos. Trans. R. Soc. London, Ser. B
374
(
1779
),
20180215
(
2019
).
116.
A. K.
McAllister
, “
Dynamic aspects of CNS synapse formation
,”
Annu. Rev. Neurosci.
30
(
1
),
425
450
(
2007
).
117.
M.
Krieg
,
G.
Fläschner
,
D.
Alsteens
,
B. M.
Gaub
,
W. H.
Roos
,
G. J. L.
Wuite
,
H. E.
Gaub
,
C.
Gerber
,
Y. F.
Dufrêne
, and
D. J.
Müller
, “
Atomic force microscopy-based mechanobiology
,”
Nat. Rev. Phys.
1
(
1
),
41
57
(
2019
).
118.
K.
Franze
,
M.
Francke
,
K.
Günter
,
A. F.
Christ
,
N.
Körber
,
A.
Reichenbach
, and
J.
Guck
, “
Spatial mapping of the mechanical properties of the living retina using scanning force microscopy
,”
Soft Matter
7
(
7
),
3147
3154
(
2011
).
119.
S.
Okuda
,
N.
Takata
,
Y.
Hasegawa
,
M.
Kawada
,
Y.
Inoue
,
T.
Adachi
,
Y.
Sasai
, and
M.
Eiraku
, “
Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis
,”
Sci. Adv.
4
(
11
),
eaau1354
(
2018
).
120.
R.
Prevedel
,
A.
Diz-Muñoz
,
G.
Ruocco
, and
G.
Antonacci
, “
Brillouin microscopy: An emerging tool for mechanobiology
,”
Nat. Methods
16
(
10
),
969
977
(
2019
).
121.
G.
Scarcelli
and
S. H.
Yun
, “
Confocal Brillouin microscopy for three-dimensional mechanical imaging
,”
Nat. Photonics
2
(
1
),
39
43
(
2008
).
122.
R.
Schlüßler
,
S.
Möllmert
,
S.
Abuhattum
,
G.
Cojoc
,
P.
Müller
,
K.
Kim
,
C.
Möckel
,
C.
Zimmermann
,
J.
Czarske
, and
J.
Guck
, “
Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging
,”
Biophys. J.
115
(
5
),
911
923
(
2018
).
123.
I. P.
Weber
,
K.
Franze
,
S. H.
Yun
, and
G.
Scarcelli
, “
The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy
,”
Phys. Biol.
14
(
6
),
065006
(
2017
).
124.
Y.
Ambekar
,
M.
Singh
,
G.
Scarcelli
,
E. M.
Rueda
,
B. M.
Hall
,
R. A.
Poché
, and
K. V.
Larin
, “
Characterization of retinal biomechanical properties using Brillouin microscopy
,”
J. Biomed. Opt.
25
(
9
),
090502
(
2020
).
125.
A.
Vogel
and
V.
Venugopalan
, “
Mechanisms of pulsed laser ablation of biological tissues
,”
Chem. Rev.
103
(
2
),
577
644
(
2003
).
126.
A. G.
Fletcher
,
M.
Osterfield
,
R. E.
Baker
, and
S. Y.
Shvartsman
, “
Vertex models of epithelial morphogenesis
,”
Biophys. J.
106
(
11
),
2291
2304
(
2014
).
127.
R.
Farhadifar
,
J.-C.
Röper
,
B.
Aigouy
,
S.
Eaton
, and
F.
Jülicher
, “
The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing
,”
Curr. Biol.
17
(
24
),
2095
2104
(
2007
).
128.
S.
Alt
,
P. S.
Ganguly
, and
G.
Salbreux
, “
Vertex models: From cell mechanics to tissue morphogenesis
,”
Philos. Trans. R. Soc. B
372
(
1720
),
20150520
(
2017
).
129.
R. B.
MacDonald
,
O.
Randlett
,
J.
Oswald
,
T.
Yoshimatsu
,
K.
Franze
, and
W. A.
Harris
, “
Müller glia provide essential tensile strength to the developing retina
,”
J. Cell Biol.
210
(
7
),
1075
1083
(
2015
).
130.
N.
Vladimirov
,
C.
Wang
,
B.
Höckendorf
,
A.
Pujala
,
M.
Tanimoto
,
Y.
Mu
,
C.-T.
Yang
,
J. D.
Wittenbach
,
J.
Freeman
,
S.
Preibisch
,
M.
Koyama
,
P. J.
Keller
, and
M. B.
Ahrens
, “
Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function
,”
Nat. Methods
15
(
12
),
1117
1125
(
2018
).
131.
Y.
Song
,
D.
Li
,
O.
Farrelly
,
L.
Miles
,
F.
Li
,
S. E.
Kim
,
T. Y.
Lo
,
F.
Wang
,
T.
Li
,
K. L.
Thompson-Peer
,
J.
Gong
,
S. E.
Murthy
,
B.
Coste
,
N.
Yakubovich
,
A.
Patapoutian
,
Y.
Xiang
,
P.
Rompolas
,
L. Y.
Jan
, and
Y. N.
Jan
, “
The mechanosensitive ion channel piezo inhibits axon regeneration
,”
Neuron
102
(
2
),
373
389
(
2019
).
132.
O.
Campàs
, “
A toolbox to explore the mechanics of living embryonic tissues
,”
Semin. Cell Dev. Biol.
55
,
119
130
(
2016
).
133.
G.
Martínez-Ara
,
N.
Taberner
,
M.
Takayama
,
E.
Sandaltzopoulou
,
C. E.
Villava
,
N.
Takata
,
M.
Eiraku
, and
M.
Ebisuya
, “
Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues
,” bioRxiv (
2021
).
134.
A.
Mongera
,
P.
Rowghanian
,
H. J.
Gustafson
,
E.
Shelton
,
D. A.
Kealhofer
,
E. K.
Carn
,
F.
Serwane
,
A. A.
Lucio
,
J.
Giammona
, and
O.
Campàs
, “
A fluid-to-solid jamming transition underlies vertebrate body axis elongation
,”
Nature
561
(
7723
),
401
405
(
2018
).
135.
F.
Serwane
,
A.
Mongera
,
P.
Rowghanian
,
D. A.
Kealhofer
,
A. A.
Lucio
,
Z. M.
Hockenbery
, and
O.
Campàs
, “
In vivo quantification of spatially varying mechanical properties in developing tissues
,”
Nat. Methods
14
(
2
),
181
186
(
2017
).
136.
M. J.
Kratochvil
,
A. J.
Seymour
,
T. L.
Li
,
S. P.
Paşca
,
C. J.
Kuo
, and
S. C.
Heilshorn
, “
Engineered materials for organoid systems
,”
Nat. Rev. Mater.
4
(
9
),
606
622
(
2019
).
137.
E.
Karzbrun
,
A.
Kshirsagar
,
S. R.
Cohen
,
J. H.
Hanna
, and
O.
Reiner
, “
Human brain organoids on a chip reveal the physics of folding
,”
Nat. Phys.
14
(
5
),
515
522
(
2018
).
138.
R.
Simó
,
M.
Villarroel
,
L.
Corraliza
,
C.
Hernández
, and
M.
Garcia-Ramírez
, “
The retinal pigment epithelium: Something more than a constituent of the blood-retinal barrier—Implications for the pathogenesis of diabetic retinopathy
,”
J. Biomed. Biotechnol.
2010
,
190724
.
139.
S.
Dahl-Jensen
and
A.
Grapin-Botton
, “
The physics of organoids: A biophysical approach to understanding organogenesis
,”
Development
144
(
6
),
946
951
(
2017
).
140.
S.
Montes-Olivas
,
L.
Marucci
, and
M.
Homer
, “
Mathematical models of organoid cultures
,”
Front. Genet.
10
,
873
(
2019
).
141.
S.
Okuda
,
T.
Miura
,
Y.
Inoue
,
T.
Adachi
, and
M.
Eiraku
, “
Combining turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching
,”
Sci. Rep.
8
(
1
),
2386
(
2018
).
142.
S.
Okuda
,
Y.
Inoue
,
M.
Eiraku
,
Y.
Sasai
, and
T.
Adachi
, “
Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis
,”
Biomech. Model. Mechanobiol.
12
(
4
),
627
644
(
2013
).
143.
H.
Honda
,
M.
Tanemura
, and
T.
Nagai
, “
A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate
,”
J. Theor. Biol.
226
(
4
),
439
453
(
2004
).
144.
V. F.
Fiore
,
M.
Krajnc
,
F. G.
Quiroz
,
J.
Levorse
,
H. A.
Pasolli
,
S. Y.
Shvartsman
, and
E.
Fuchs
, “
Mechanics of a multilayer epithelium instruct tumour architecture and function
,”
Nature
585
(
7825
),
433
439
(
2020
).
145.
E.
Latorre
,
S.
Kale
,
L.
Casares
,
M.
Gómez-González
,
M.
Uroz
,
L.
Valon
,
R. V.
Nair
,
E.
Garreta
,
N.
Montserrat
,
A.
del Campo
,
B.
Ladoux
,
M.
Arroyo
, and
X.
Trepat
, “
Active superelasticity in three-dimensional epithelia of controlled shape
,”
Nature
563
(
7730
),
203
208
(
2018
).
146.
M.
Krajnc
,
S.
Dasgupta
,
P.
Ziherl
, and
J.
Prost
, “
Fluidization of epithelial sheets by active cell rearrangements
,”
Phys. Rev. E
98
(
2
),
022409
(
2018
).
147.
M.
Krajnc
and
P.
Ziherl
, “
Theory of epithelial elasticity
,”
Phys. Rev. E
92
(
5
),
052713
(
2015
).
148.
J.
Rozman
,
M.
Krajnc
, and
P.
Ziherl
, “
Collective cell mechanics of epithelial shells with organoid-like morphologies
,”
Nat. Commun.
11
(
1
),
3805
(
2020
).
149.
Q.
Yang
,
S.-L.
Xue
,
C. J.
Chan
,
M.
Rempfler
,
D.
Vischi
,
F.
Maurer-Gutierrez
,
T.
Hiiragi
,
E.
Hannezo
, and
P.
Liberali
, “
Cell fate coordinates mechano-osmotic forces in intestinal crypt formation
,”
Nat. Cell Biol.
23
(
7
),
733
744
(
2021
).
150.
P.
Gómez-Gálvez
,
P.
Vicente-Munuera
,
S.
Anbari
,
J.
Buceta
, and
L. M.
Escudero
, “
The complex three-dimensional organization of epithelial tissues
,”
Development
148
(
1
),
dev195669
(
2021
).
151.
D.
Bi
,
J. H.
Lopez
,
J. M.
Schwarz
, and
M. L.
Manning
, “
A density-independent rigidity transition in biological tissues
,”
Nat. Phys.
11
(
12
),
1074
1079
(
2015
).
152.
T. A.
Engstrom
,
T.
Zhang
,
A. K.
Lawton
,
A. L.
Joyner
, and
J. M.
Schwarz
, “
Buckling without bending: A new paradigm in morphogenesis
,”
Phys. Rev. X
8
(
4
),
041053
(
2018
).
153.
D.
Riccobelli
and
G.
Bevilacqua
, “
Surface tension controls the onset of gyrification in brain organoids
,”
J. Mech. Phys. Solids
134
,
103745
(
2020
).
154.
V.
Balbi
,
M.
Destrade
, and
A.
Goriely
, “
Mechanics of human brain organoids
,”
Phys. Rev. E
101
(
2–1
),
022403
(
2020
).
You do not currently have access to this content.