Phagocytic immune cells can clear pathogens from the body by engulfing them. Bacterial biofilms are communities of bacteria that are bound together in a matrix that gives biofilms viscoelastic mechanical properties that do not exist for free-swimming bacteria. Since a neutrophil is too small to engulf an entire biofilm, it must be able to detach and engulf a few bacteria at a time if it is to use phagocytosis to clear the infection. We recently found a negative correlation between the target elasticity and phagocytic success. That earlier work used time-consuming, manual analysis of micrographs of neutrophils and fluorescent beads. Here, we introduce and validate flow cytometry as a fast and high-throughput technique that increases the number of neutrophils analyzed per experiment by two orders of magnitude, while also reducing the time required to do so from hours to minutes. We also introduce the use of polyacrylamide gels in our assay for engulfment success. The tunability of polyacrylamide gels expands the mechanical parameter space we can study, and we find that high toughness and yield strain, even with low elasticity, also impact the phagocytic success as well as the timescale thereof. For stiff gels with low-yield strain, and consequent low toughness, phagocytic success is nearly four times greater when neutrophils are incubated with gels for 6 h than after only 1 h of incubation. In contrast, for soft gels with high-yield strain and consequent high toughness, successful engulfment is much less time-sensitive, increasing by less than a factor of two from 1 to 6 h incubation.

1.
B.
Amulic
,
C.
Cazalet
,
G. L.
Hayes
,
K. D.
Metzler
, and
A.
Zychlinsky
,
Annu. Rev. Immunol.
30
,
459
489
(
2012
).
2.
3.
E.
Kolaczkowska
and
P.
Kubes
,
Nat. Rev. Immunol.
13
(
3
),
159
175
(
2013
).
4.
M.
Silva
and
M.
Correia-Neves
,
Front. Immunol.
3
,
174
(
2012
).
5.
D. M.
Richards
and
R. G.
Endres
,
Biophys. J.
107
(
7
),
1542
1553
(
2014
).
6.
M.
Herant
,
V.
Heinrich
, and
M.
Dembo
,
J. Cell Sci.
119
(
9
),
1903
1913
(
2006
).
7.
M.
Davis-Fields
,
L. A.
Bakhtiari
,
Z.
Lan
,
K. N.
Kovach
,
L.
Wang
,
E. M.
Cosgriff-Hernandez
, and
V. D.
Gordon
,
Biophys. J.
117
(
8
),
1496
1507
(
2019
).
8.
H.-C.
Flemming
and
J.
Wingender
,
Nat. Rev. Microbiol.
8
(
9
),
623
633
(
2010
).
9.
V.
Gordon
,
L.
Bakhtiari
, and
K.
Kovach
,
Phys. Biol.
16
(
4
),
041001
(
2019
).
10.
E. E.
Mann
and
D. J.
Wozniak
,
FEMS Microbiol. Rev.
36
(
4
),
893
916
(
2012
).
11.
R. M.
Donlan
and
J. W.
Costerton
,
Clin. Microbiol. Rev.
15
(
2
),
167
193
(
2002
).
12.
C.
Jones
and
D.
Wozniak
,
mBio
8
(
3
),
e00864-00817
(
2017
).
13.
M.
Mishra
,
M.
Byrd
,
S.
Sergeant
,
A.
Azad
,
M.
Parsek
,
L.
McPhail
,
L.
Schlesinger
, and
D.
Wozniak
,
Cell Microbiol.
14
(
1
),
95
106
(
2012
).
14.
M.
Bhattacharya
,
E. T. M.
Berends
,
R.
Chan
,
E.
Schwab
,
S.
Roy
,
C. K.
Sen
,
V. J.
Torres
, and
D. J.
Wozniak
,
Proc. Natl. Acad. Sci. U. S. A.
115
(
28
),
7416
7421
(
2018
).
15.
K. N.
Kragh
,
M.
Alhede
,
P. Ø.
Jensen
,
C.
Moser
,
T.
Scheike
,
C. S.
Jacobsen
,
S.
Seier Poulsen
,
S. R.
Eickhardt-Sørensen
,
H.
Trøstrup
,
L.
Christoffersen
,
H.-P.
Hougen
,
L. F.
Rickelt
,
M.
Kühl
,
N.
Høiby
, and
T.
Bjarnsholt
,
Infect. Immun.
82
(
11
),
4477
4486
(
2014
).
16.
K.
Kirketerp-Moller
,
P. O.
Jensen
,
M.
Fazli
,
K. G.
Madsen
,
J.
Pedersen
,
C.
Moser
,
T.
Tolker-Nielsen
,
N.
Hoiby
,
M.
Givskov
, and
T.
Bjarnsholt
,
J. Clin. Microbiol.
46
(
8
),
2717
2722
(
2008
).
17.
F.
Mercer
,
S. H.
Ng
,
T. M.
Brown
,
G.
Boatman
, and
P. J.
Johnson
,
PLoS Biol.
16
(
2
),
e2003885
(
2018
).
18.
K. J.
Li
,
C. H.
Wu
,
C. Y.
Shen
,
Y. M.
Kuo
,
C. L.
Yu
, and
S. C.
Hsieh
,
PLoS One
11
(
6
),
e0156262
(
2016
).
19.
R.
Valgardsdottir
,
I.
Cattaneo
,
C.
Klein
,
M.
Introna
,
M.
Figliuzzi
, and
J.
Golay
,
Blood
129
(
19
),
2636
2644
(
2017
).
20.
R. P.
Taylor
and
M. A.
Lindorfer
,
Blood
125
(
5
),
762
766
(
2015
).
21.
H. L.
Matlung
,
L.
Babes
,
X. W.
Zhao
,
M.
van Houdt
,
L. W.
Treffers
,
D. J.
van Rees
,
K.
Franke
,
K.
Schornagel
,
P.
Verkuijlen
,
H.
Janssen
,
P.
Halonen
,
C.
Lieftink
,
R. L.
Beijersbergen
,
J. H. W.
Leusen
,
J. J.
Boelens
,
I.
Kuhnle
,
J.
van der Werff Ten Bosch
,
K.
Seeger
,
S.
Rutella
,
D.
Pagliara
,
T.
Matozaki
,
E.
Suzuki
,
C. W.
Menke-van der Houven van Oordt
,
R.
van Bruggen
,
D.
Roos
,
R. A. W.
van Lier
,
T. W.
Kuijpers
,
P.
Kubes
, and
T. K.
van den Berg
,
Cell Rep.
23
(
13
),
3946
3959
(
2018
).
22.
J.
Pelleg
,
Mechanical Properties of Materials
(
Springer Netherlands
,
2013
).
23.
K. N.
Kovach
,
D.
Fleming
,
M. J.
Wells
,
K. P.
Rumbaugh
, and
V. D.
Gordon
,
Langmuir
36
(
6
),
1585
1595
(
2020
).
24.
K.
Kovach
,
M.
Davis-Fields
,
Y.
Irie
,
K.
Jain
,
S.
Doorwar
,
K.
Vuong
,
N.
Dhamani
,
K.
Mohanty
,
A.
Touhami
, and
V. D.
Gordon
,
npj Biofilms Microbiomes
3
(
1
),
1
(
2017
).
25.
H.
Boudarel
,
J.-D.
Mathias
,
B.
Blaysat
, and
M.
Grediac
,
npj Biofilms Microbiomes
4
,
17
(
2018
).
26.
O.
Lieleg
,
M.
Caldara
,
R.
Baumgärtel
, and
K.
Ribbeck
,
Soft Matter
7
(
7
),
3307
3314
(
2011
).
27.
P.
Stoodley
,
R.
Cargo
,
C. J.
Rupp
,
S.
Wilson
, and
I.
Klapper
,
J. Ind. Microbiol. Biotechnol.
29
(
6
),
361
367
(
2002
).
28.
B. W.
Peterson
,
Y.
He
,
Y.
Ren
,
A.
Zerdoum
,
M. R.
Libera
,
P. K.
Sharma
,
A.-J.
van Winkelhoff
,
D.
Neut
,
P.
Stoodley
,
H. C.
van der Mei
, and
H. J.
Busscher
,
FEMS Microbiol. Rev.
39
(
2
),
234
245
(
2015
).
29.
F. R. D.
Mark
and
T.
Quinn
,
Neutrophil Methods and Protocols
(
Humana Press
,
2014
).
30.
J. R.
Tse
and
A. J.
Engler
,
Curr. Protoc. Cell Biol.
47
(
1
),
10.16.1
10.16.16
(
2010
).
31.
P.
Menter
,
Acrylamide Polymerization: A Practical Approach
(Bio-Rad, 2000), available at https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_1156.pdf.
32.
T.
Boudou
,
J.
Ohayon
,
C.
Picart
, and
P.
Tracqui
,
Biorheology
43
(
6
),
721
728
(
2006
).
33.
E. A.
Golenkina
,
G. M.
Viryasova
,
N. G.
Dolinnaya
,
V. A.
Bannikova
,
T. V.
Gaponova
,
Y. M.
Romanova
, and
G. F.
Sud'ina
,
Biomolecules
10
(
2
),
249
(
2020
).
34.
R.
Bjerknes
and
C.-F.
Bassøe
,
Blut
49
(
4
),
315
323
(
1984
).
35.
S.
Subashchandrabose
and
H. L. T.
Mobley
,
Bio-Protocol
4
(
18
),
e1235
(
2014
).
36.
S.
Subashchandrabose
,
S. N.
Smith
,
R. R.
Spurbeck
,
M. M.
Kole
, and
H. L. T.
Mobley
,
PLoS Pathog.
9
(
12
),
e1003788
(
2013
).
37.
E. A.
Elsinghorst
,
Methods in Enzymology
(
Academic Press
,
1994
), Vol.
236
, pp.
405
420
.

Supplementary Material

You do not currently have access to this content.