Morphogenesis during development and regeneration requires cells to communicate and cooperate toward the construction of complex anatomical structures. One important set of mechanisms for coordinating growth and form occurs via developmental bioelectricity—the dynamics of cellular networks driving changes of resting membrane potential which interface with transcriptional and biomechanical downstream cascades. While many molecular details have been elucidated about the instructive processes mediated by ion channel-dependent signaling outside of the nervous system, future advances in regenerative medicine and bioengineering require the understanding of tissue, organ, or whole body-level properties. A key aspect of bioelectric networks is their robustness, which can drive correct, invariant patterning cues despite changing cell number and anatomical configuration of the underlying tissue network. Here, we computationally analyze the minimal models of bioelectric networks and use the example of the regenerating planarian flatworm, to reveal important system-level aspects of bioelectrically derived patterns. These analyses promote an understanding of the robustness of circuits controlling regeneration and suggest design properties that can be exploited for synthetic bioengineering.

1.
Adams
,
D. S.
,
Robinson
,
K. R.
,
Fukumoto
,
T.
,
Yuan
,
S.
,
Albertson
,
R. C.
,
Yelick
,
P.
,
Kuo
,
L.
,
McSweeney
,
M.
, and
Levin
,
M.
, “
Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates
,”
Development
133
,
1657
1671
(
2006
).
2.
Adams
,
D. S.
,
Masi
,
A.
, and
Levin
,
M.
, “
H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration
,”
Development
134
,
1323
1335
(
2007
).
3.
Adams
,
D. S.
,
Uzel
,
S. G.
,
Akagi
,
J.
,
Wlodkowic
,
D.
,
Andreeva
,
V.
,
Yelick
,
P. C.
,
Devitt-Lee
,
A.
,
Pare
,
J. F.
, and
Levin
,
M.
, “
Bioelectric signalling via potassium channels: A mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen–Tawil syndrome
,”
J. Physiol.
594
,
3245
3270
(
2016
).
4.
Alon
,
U.
,
An Introduction to Systems Biology: Design Principles of Biological Circuits
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
2019
).
5.
Barkai
,
N.
, and
Leibler
,
S.
, “
Robustness in simple biochemical networks
,”
Nature
387
,
913
917
(
1997
).
6.
Bates
,
E.
, “
Ion channels in development and cancer
,”
Annu. Rev. Cell Dev. Biol.
31
,
231
247
(
2015
).
7.
Beane
,
W. S.
,
Morokuma
,
J.
,
Adams
,
D. S.
, and
Levin
,
M.
, “
A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration
,”
Chem. Biol.
18
,
77
89
(
2011
).
8.
Beane
,
W. S.
,
Morokuma
,
J.
,
Lemire
,
J. M.
, and
Levin
,
M.
, “
Bioelectric signaling regulates head and organ size during planarian regeneration
,”
Development
140
,
313
322
(
2013
).
9.
Belus
,
M. T.
,
Rogers
,
M. A.
,
Elzubeir
,
A.
,
Josey
,
M.
,
Rose
,
S.
,
Andreeva
,
V.
,
Yelick
,
P. C.
, and
Bates
,
E. A.
, “
Kir2.1 is important for efficient BMP signaling in mammalian face development
,”
Dev. Biol.
444
(
Suppl 1
),
S297
S307
(
2018
).
10.
Bely
,
A. E.
, and
Nyberg
,
K. G.
, “
Evolution of animal regeneration: Re-emergence of a field
,”
Trends Ecol. Evol.
25
,
161
170
(
2010
).
11.
Blackiston
,
D. J.
,
Anderson
,
G. M.
,
Rahman
,
N.
,
Bieck
,
C.
, and
Levin
,
M.
, “
A novel method for inducing nerve growth via modulation of host resting potential: Gap junction-mediated and serotonergic signaling mechanisms
,”
Neurotherapeutics
12
,
170
184
(
2015
).
12.
Brodsky
,
M.
, “
Turing-like patterns can arise from purely bioelectric mechanisms
,” bioRxiv:336461 (
2018
).
13.
Brodsky
,
M.
, and
Levin
,
M.
, “
From physics to pattern: uncovering pattern formation in tissue electrophysiology
,” in
Alife 2018
, edited by
Ikegami
,
T.
,
Virgo
,
N.
,
Witkowski
,
O.
,
Oka
,
M.
,
Suzuki
,
R.
, and
Iizuka
,
H.
(
MIT Press
,
Tokyo
,
2018
), pp.
351
358
.
14.
Cervera
,
J.
,
Meseguer
,
S.
, and
Mafe
,
S.
, “
intercellular connectivity and multicellular bioelectric oscillations in nonexcitable cells: A biophysical model
,”
ACS Omega
3
,
13567
13575
(
2018a
).
15.
Cervera
,
J.
,
Pietak
,
A.
,
Levin
,
M.
, and
Mafe
,
S.
, “
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach
,”
Bioelectrochemistry
123
,
45
61
(
2018b
).
16.
Cervera
,
J.
,
Manzanares
,
J. A.
,
Mafe
,
S.
, and
Levin
,
M.
, “
Synchronization of bioelectric oscillations in networks of nonexcitable cells: From single-cell to multicellular states
,”
J. Phys. Chem. B
123
,
3924
3934
(
2019a
).
17.
Cervera
,
J.
,
Pai
,
V. P.
,
Levin
,
M.
, and
Mafe
,
S.
, “
From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers
,”
Prog. Biophys. Mol. Biol.
149
,
39
53
(
2019b
).
18.
Cervera
,
J.
,
Levin
,
M.
, and
Mafe
,
S.
, “
Bioelectrical coupling of single-cell states in multicellular systems
,”
J. Phys. Chem. Lett.
11
,
3234
3241
(
2020a
).
19.
Cervera
,
J.
,
Meseguer
,
S.
,
Levin
,
M.
, and
Mafe
,
S.
, “
Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions
,”
Bioelectrochemistry
132
,
107410
(
2020b
).
20.
Cheney
,
N.
,
Clune
,
J.
, and
Lipson
,
H.
, “
Evolved electrophysiological soft robots
,” in
Alife 2014: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems
(
MIT Press
,
2014
), Vol.
14
, pp.
222
229
.
21.
Chernet
,
B. T.
, and
Levin
,
M.
, “
Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model
,”
Dis. Models Mech.
6
,
595
607
(
2013
).
22.
Chernet
,
B. T.
,
Fields
,
C.
, and
Levin
,
M.
, “
Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos
,”
Front. Physiol.
5
,
519
(
2015
).
23.
Chernet
,
B. T.
, and
Levin
,
M.
, “
Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range
,”
Oncotarget
5
,
3287
3306
(
2014
).
24.
Chernet
,
B. T.
,
Adams
,
D. S.
,
Lobikin
,
M.
, and
Levin
,
M.
, “
Use of genetically encoded, light-gated ion translocators to control tumorigenesis
,”
Oncotarget
7
,
19575
19588
(
2016
).
25.
Daane
,
J. M.
,
Lanni
,
J.
,
Rothenberg
,
I.
,
Seebohm
,
G.
,
Higdon
,
C. W.
,
Johnson
,
S. L.
, and
Harris
,
M. P.
, “
Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin
,”
Sci. Rep.
8
,
10391
(
2018
).
26.
Dahal
,
G. R.
,
Pradhan
,
S. J.
, and
Bates
,
E. A.
, “
Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release
,”
Development
144
,
2771
2783
(
2017
).
27.
De
,
A.
,
Chakravarthy
,
V. S.
, and
Levin
,
M.
, “
A computational model of planarian regeneration
,”
Int. J. Parallel, Emergent Distrib. Syst.
32
,
331
347
(
2016
).
28.
Durant
,
F.
,
Morokuma
,
J.
,
Fields
,
C.
,
Williams
,
K.
,
Adams
,
D. S.
, and
Levin
,
M.
, “
Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients
,”
Biophys. J.
112
,
2231
2243
(
2017
).
29.
Durant
,
F.
,
Bischof
,
J.
,
Fields
,
C.
,
Morokuma
,
J.
,
LaPalme
,
J.
,
Hoi
,
A.
, and
Levin
,
M.
, “
The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity
,”
Biophys. J.
116
,
948
961
(
2019
).
30.
Eldar
,
A.
,
Dorfman
,
R.
,
Weiss
,
D.
,
Ashe
,
H.
,
Shilo
,
B. Z.
, and
Barkai
,
N.
, “
Robustness of the BMP morphogen gradient in Drosophila embryonic patterning
,”
Nature
419
,
304
308
(
2002
).
31.
Emmons-Bell
,
M.
,
Durant
,
F.
,
Tung
,
A.
,
Pietak
,
A.
,
Miller
,
K.
,
Kane
,
A.
,
Martyniuk
,
C. J.
,
Davidian
,
D.
,
Morokuma
,
J.
, and
Levin
,
M.
, “
Regenerative adaptation to electrochemical perturbation in planaria: A molecular analysis of physiological plasticity
,”
iScience
22
,
147
165
(
2019
).
32.
Esser
,
A. T.
,
Smith
,
K. C.
,
Weaver
,
J. C.
, and
Levin
,
M.
, “
Mathematical model of morphogen electrophoresis through gap junctions
,”
Dev. Dyn.
235
,
2144
2159
(
2006
).
33.
Falk
,
M. M.
,
Kells
,
R. M.
, and
Berthoud
,
V. M.
, “
Degradation of connexins and gap junctions
,”
FEBS Lett.
588
,
1221
1229
(
2014
).
34.
Fincher
,
C. T.
,
Wurtzel
,
O.
,
de Hoog
,
T.
,
Kravarik
,
K. M.
, and
Reddien
,
P. W.
, “
Cell type transcriptome atlas for the planarian Schmidtea mediterranea
,”
Science
360
,
eaaq1736
(
2018
).
35.
Forrester
,
J. V.
,
Lois
,
N.
,
Zhao
,
M.
, and
McCaig
,
C.
, “
The spark of life: The role of electric fields in regulating cell behaviour using the eye as a model system
,”
Ophthalmic Res.
39
,
4
16
(
2007
).
36.
Fukumoto
,
T.
,
Kema
,
I. P.
, and
Levin
,
M.
, “
Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos
,”
Curr. Biol.
15
,
794
803
(
2005
).
37.
Grodstein
,
J.
(
2018
). “
New worm fitness with mostly-continuous derivatives; better comments for gating
,” gitlab. https://gitlab.com/grodstein/bitsey.
38.
George
,
L. F.
,
Pradhan
,
S. J.
,
Mitchell
,
D.
,
Josey
,
M.
,
Casey
,
J.
,
Belus
,
M. T.
,
Fedder
,
K. N.
,
Dahal
,
G. R.
, and
Bates
,
E. A.
, “
Ion channel contributions to wing development in Drosophila melanogaster
,”
G3 (Bethesda)
9
,
999
1008
(
2019
).
39.
Harks
,
E. G.
,
Torres
,
J. J.
,
Cornelisse
,
L. N.
,
Ypey
,
D. L.
, and
Theuvenet
,
A. P.
, “
Ionic basis for excitability of normal rat kidney (NRK) fibroblasts
,”
J. Cell. Physiol.
196
,
493
503
(
2003
).
40.
Harris
,
A. K.
, “
The need for a concept of shape homeostasis
,”
Biosystems
173
,
65
72
(
2018
).
41.
Harris
,
A. L.
, “
Connexin channel permeability to cytoplasmic molecules
,”
Prog. Biophys. Mol. Biol.
94
,
120
143
(
2007
).
42.
Harris
,
M. P.
, “
Bioelectric signaling as a unique regulator of development and regeneration
,”
Development
148
,
dev180794
(
2021
).
43.
Hinard
,
V.
,
Belin
,
D.
,
Konig
,
S.
,
Bader
,
C. R.
, and
Bernheim
,
L.
, “
Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242
,”
Development
135
,
859
867
(
2008
).
44.
Jiang
,
T. X.
,
Li
,
A.
,
Lin
,
C. M.
,
Chiu
,
C.
,
Cho
,
J. H.
,
Reid
,
B.
,
Zhao
,
M.
,
Chow
,
R. H.
,
Widelitz
,
R. B.
, and
Chuong
,
C. M.
, “
Global feather orientations changed by electric current
,”
iScience
24
,
102671
(
2021
).
45.
Keener
,
J. P.
, and
Sneyd
,
J.
,
Mathematical Physiology
, 2nd ed. (
Springer
,
New York
,
2009
).
46.
Kondo
,
S.
, and
Miura
,
T.
, “
Reaction-diffusion model as a framework for understanding biological pattern formation
,”
Science
329
,
1616
1620
(
2010
).
47.
Konig
,
S.
,
Hinard
,
V.
,
Arnaudeau
,
S.
,
Holzer
,
N.
,
Potter
,
G.
,
Bader
,
C. R.
, and
Bernheim
,
L.
, “
Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation
,”
J. Biol. Chem.
279
,
28187
28196
(
2004
).
48.
Konig
,
S.
,
Beguet
,
A.
,
Bader
,
C. R.
, and
Bernheim
,
L.
, “
The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion
,”
Development
133
,
3107
3114
(
2006
).
49.
Kriegman
,
S.
,
Blackiston
,
D.
,
Levin
,
M.
, and
Bongard
,
J.
, “
A scalable pipeline for designing reconfigurable organisms
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
1853
1859
(
2020
).
50.
Krysko
,
D. V.
,
Leybaert
,
L.
,
Vandenabeele
,
P.
, and
D'Herde
,
K.
, “
Gap junctions and the propagation of cell survival and cell death signals
,”
Apoptosis
10
,
459
469
(
2005
).
51.
Lan
,
J. Y.
,
Williams
,
C.
,
Levin
,
M.
, and
Black
,
L. D.
 3rd
, “
Depolarization of cellular resting membrane potential promotes neonatal cardiomyocyte proliferation in vitro
,”
Cell Mol. Bioeng.
7
,
432
445
(
2014
).
52.
Landge
,
A. N.
,
Jordan
,
B. M.
,
Diego
,
X.
, and
Muller
,
P.
, “
Pattern formation mechanisms of self-organizing reaction-diffusion systems
,”
Dev. Biol.
460
,
2
11
(
2020
).
53.
Lang
,
F.
, and
Stournaras
,
C.
, “
Ion channels in cancer: Future perspectives and clinical potential
,”
Philos. Trans. R. Soc. London, Ser. B
369
,
20130108
(
2014
).
54.
Lanni
,
J. S.
,
Peal
,
D.
,
Ekstrom
,
L.
,
Chen
,
H.
,
Stanclift
,
C.
,
Bowen
,
M. E.
,
Mercado
,
A.
,
Gamba
,
G.
,
Kahle
,
K. T.
, and
Harris
,
M. P.
, “
Integrated K+ channel and K+Cl- cotransporter functions are required for the coordination of size and proportion during development
,”
Dev. Biol.
456
,
164
178
(
2019
).
55.
Law
,
R.
, and
Levin
,
M.
, “
Bioelectric memory: Modeling resting potential bistability in amphibian embryos and mammalian cells
,”
Theor. Biol. Med. Modell.
12
,
22
(
2015
).
56.
Levin
,
M.
,
Thorlin
,
T.
,
Robinson
,
K. R.
,
Nogi
,
T.
, and
Mercola
,
M.
, “
Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning
,”
Cell
111
,
77
89
(
2002
).
57.
Levin
,
M.
,
Pezzulo
,
G.
, and
Finkelstein
,
J. M.
, “
Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form
,”
Annu. Rev. Biomed. Eng.
19
,
353
387
(
2017
).
58.
Levin
,
M.
, and
Martyniuk
,
C. J.
, “
The bioelectric code: An ancient computational medium for dynamic control of growth and form
,”
Biosystems
164
,
76
93
(
2018
).
59.
Levin
,
M.
, and
Martinez Arias
,
A.
, “
Reverse-engineering growth and form in Heidelberg
,”
Development
146
,
dev177261
(
2019
).
60.
Levin
,
M.
,
Pietak
,
A. M.
, and
Bischof
,
J.
, “
Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches
,”
Semin. Cell Dev. Biol.
87
,
125
144
(
2019
).
61.
Levin
,
M.
, “
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer
,”
Cell
184
,
1971
1989
(
2021
).
62.
Levin
,
M.
, “
Bioelectrical approaches to cancer as a problem of the scaling of the cellular self
,”
Prog. Biophys. Mol. Biol.
(in press) (
2021c
).
63.
Lobikin
,
M.
,
Pare
,
J. F.
,
Kaplan
,
D. L.
, and
Levin
,
M.
, “
Selective depolarization of transmembrane potential alters muscle patterning and muscle cell localization in Xenopus laevis embryos
,”
Int. J. Dev. Biol.
59
,
303
311
(
2015
).
64.
Lobo
,
D.
,
Beane
,
W. S.
, and
Levin
,
M.
, “
Modeling planarian regeneration: A primer for reverse-engineering the worm
,”
PLoS Comput. Biol.
8
,
e1002481
(
2012
).
65.
Maden
,
M.
, “
The evolution of regeneration—where does that leave mammals?
,”
Int. J. Dev. Biol.
62
,
369
372
(
2018
).
66.
Manicka
,
S.
, and
Levin
,
M.
, “
Modeling somatic computation with non-neural bioelectric networks
,”
Sci. Rep.
9
,
18612
(
2019
).
67.
Martinez-Corral
,
R.
,
Liu
,
J.
,
Prindle
,
A.
,
Suel
,
G. M.
, and
Garcia-Ojalvo
,
J.
, “
Metabolic basis of brain-like electrical signalling in bacterial communities
,”
Philos. Trans. R. Soc. London, Ser. B
374
,
20180382
(
2019
).
68.
McAdams
,
H. H.
, and
Arkin
,
A.
, “
It's a noisy business! Genetic regulation at the nanomolar scale
,”
Trends Genet.
15
,
65
69
(
1999
).
69.
McNamara
,
H. M.
,
Zhang
,
H. K.
,
Werley
,
C. A.
, and
Cohen
,
A. E.
, “
Optically controlled oscillators in an engineered bioelectric tissue
,”
Phys. Rev. X
6
,
031001
(
2016
).
70.
McNamara
,
H. M.
,
Dodson
,
S.
,
Huang
,
Y. L.
,
Miller
,
E. W.
,
Sandstede
,
B.
, and
Cohen
,
A. E.
, “
Geometry-dependent arrhythmias in electrically excitable tissues
,”
Cell Syst.
7
,
359
370
(
2018
).
71.
McNamara
,
H. M.
,
Salegame
,
R.
,
Tanoury
,
Z. A.
,
Xu
,
H.
,
Begum
,
S.
,
Ortiz
,
G.
,
Pourquie
,
O.
, and
Cohen
,
A. E.
, “
Bioelectrical signaling via domain wall migration
,” bioRxiv:570440 (
2019
).
72.
McNamara
,
H. M.
,
Salegame
,
R.
,
Al Tanoury
,
Z.
,
Xu
,
H.
,
Begum
,
S.
,
Ortiz
,
G.
,
Pourquie
,
O.
, and
Cohen
,
A. E.
, “
Bioelectrical domain walls in homogeneous tissues
,”
Nat. Phys.
16
,
357
364
(
2020
).
73.
Nelson
,
P. C.
,
Radosavljević
,
M.
, and
Bromberg
,
S.
,
Biological Physics: Energy, Information, Life
(
W. H. Freeman and Co
.,
New York
,
2004
).
74.
Nilsson
,
J. W.
, and
Riedel
,
S. A.
,
Electric Circuits
, 11th ed. (
Pearson
,
New York
,
2019
).
75.
Nogi
,
T.
, and
Levin
,
M.
, “
Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration
,”
Dev. Biol.
287
,
314
335
(
2005
).
76.
Oviedo
,
N. J.
,
Newmark
,
P. A.
, and
Sanchez Alvarado
,
A.
, “
Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea
,”
Dev. Dyn.
226
,
326
333
(
2003
).
77.
Oviedo
,
N. J.
,
Morokuma
,
J.
,
Walentek
,
P.
,
Kema
,
I. P.
,
Gu
,
M. B.
,
Ahn
,
J. M.
,
Hwang
,
J. S.
,
Gojobori
,
T.
, and
Levin
,
M.
, “
Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration
,”
Dev. Biol.
339
,
188
199
(
2010
).
78.
Owlarn
,
S.
, and
Bartscherer
,
K.
, “
Go ahead, grow a head! A planarian's guide to anterior regeneration
,”
Regeneration (Oxf)
3
,
139
155
(
2016
).
79.
Pai
,
V. P.
,
Aw
,
S.
,
Shomrat
,
T.
,
Lemire
,
J. M.
, and
Levin
,
M.
, “
Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis
,”
Development
139
,
313
323
(
2012
).
80.
Pai
,
V. P.
,
Lemire
,
J. M.
,
Chen
,
Y.
,
Lin
,
G.
, and
Levin
,
M.
, “
Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS
,”
Int. J. Dev. Biol.
59
,
327
340
(
2015a
).
81.
Pai
,
V. P.
,
Lemire
,
J. M.
,
Pare
,
J. F.
,
Lin
,
G.
,
Chen
,
Y.
, and
Levin
,
M.
, “
Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation
,”
J. Neurosci.
35
,
4366
4385
(
2015b
).
82.
Pai
,
V. P.
,
Martyniuk
,
C. J.
,
Echeverri
,
K.
,
Sundelacruz
,
S.
,
Kaplan
,
D. L.
, and
Levin
,
M.
, “
Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation
,”
Regeneration (Oxf)
3
,
3
25
(
2016
).
83.
Pai
,
V. P.
,
Pietak
,
A.
,
Willocq
,
V.
,
Ye
,
B.
,
Shi
,
N. Q.
, and
Levin
,
M.
, “
HCN2 rescues brain defects by enforcing endogenous voltage pre-patterns
,”
Nat. Commun.
9
,
998
(
2018
).
84.
Pai
,
V. P.
,
Cervera
,
J.
,
Mafe
,
S.
,
Willocq
,
V.
,
Lederer
,
E. K.
, and
Levin
,
M.
, “
HCN2 channel-induced rescue of brain teratogenesis via local and long-range bioelectric repair
,”
Front. Cell. Neurosci.
14
,
136
(
2020
).
85.
Pellettieri
,
J.
, “
Regenerative tissue remodeling in planarians—The mysteries of morphallaxis
,”
Semin. Cell Dev. Biol.
87
,
13
21
(
2019
).
86.
Perathoner
,
S.
,
Daane
,
J. M.
,
Henrion
,
U.
,
Seebohm
,
G.
,
Higdon
,
C. W.
,
Johnson
,
S. L.
,
Nusslein-Volhard
,
C.
, and
Harris
,
M. P.
, “
Bioelectric signaling regulates size in zebrafish fins
,”
PLoS Genet.
10
,
e1004080
(
2014
).
87.
Pezzulo
,
G.
, and
Levin
,
M.
, “
Top-down models in biology: Explanation and control of complex living systems above the molecular level
,”
J. R. Soc. Interface
13
,
20160555
(
2016
).
88.
Pietak
,
A.
, and
Levin
,
M.
, “
Exploring instructive physiological signaling with the bioelectric tissue simulation engine
,”
Front. Bioeng. Biotechnol.
4
,
55
(
2016
).
89.
Pietak
,
A.
, and
Levin
,
M.
, “
Bioelectric gene and reaction networks: Computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation
,”
J. R. Soc. Interface
14
,
20170425
(
2017
).
90.
Pietak
,
A.
, and
Levin
,
M.
, “
Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances
,”
Prog. Biophys. Mol. Biol.
137
,
52
68
(
2018
).
91.
Pietak
,
A.
,
Bischof
,
J.
,
LaPalme
,
J.
,
Morokuma
,
J.
, and
Levin
,
M.
, “
Neural control of body-plan axis in regenerating planaria
,”
PLoS Comput. Biol.
15
,
e1006904
(
2019
).
92.
Pinet
,
K.
,
Deolankar
,
M.
,
Leung
,
B.
, and
McLaughlin
,
K. A.
, “
Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling
,”
Development
146
,
dev175893
(
2019
).
93.
Pinet
,
K.
, and
McLaughlin
,
K. A.
, “
Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology
,”
Dev. Biol.
451
,
134
145
(
2019
).
94.
Prevarskaya
,
N.
,
Skryma
,
R.
, and
Shuba
,
Y.
, “
Ion channels in cancer: Are cancer hallmarks oncochannelopathies?
,”
Physiol. Rev.
98
,
559
621
(
2018
).
95.
Prindle
,
A.
,
Liu
,
J.
,
Asally
,
M.
,
Ly
,
S.
,
Garcia-Ojalvo
,
J.
, and
Suel
,
G. M.
, “
Ion channels enable electrical communication in bacterial communities
,”
Nature
527
,
59
63
(
2015
).
96.
Raspopovic
,
J.
,
Marcon
,
L.
,
Russo
,
L.
, and
Sharpe
,
J.
, “
Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients
,”
Science
345
,
566
570
(
2014
).
97.
Reddien
,
P. W.
, “
The cellular and molecular basis for planarian regeneration
,”
Cell
175
,
327
345
(
2018
).
98.
Saló
,
E.
,
Abril
,
J. F.
,
Adell
,
T.
,
Cebrià
,
F.
,
Eckelt
,
K.
,
Fernandez-Taboada
,
E.
,
Handberg-Thorsager
,
M.
,
Iglesias
,
M.
,
Molina
,
M. D.
, and
Rodriguez-Esteban
,
G.
, “
Planarian regeneration: Achievements and future directions after 20 years of research
,”
Int. J. Dev. Biol.
53
,
1317
1327
(
2009
).
99.
Schmidt-Nielsen
,
K.
,
Scaling, Why is Animal Size so Important?
(
Cambridge University Press
,
Cambridge, NY
,
1984
).
100.
Schumacher
,
J. A.
,
Hsieh
,
Y. W.
,
Chen
,
S.
,
Pirri
,
J. K.
,
Alkema
,
M. J.
,
Li
,
W. H.
,
Chang
,
C.
, and
Chuang
,
C. F.
, “
Intercellular calcium signaling in a gap junction-coupled cell network establishes asymmetric neuronal fates in C. elegans
,”
Development
139
,
4191
4201
(
2012
).
101.
Sheiman
,
I. M.
, and
Kreshchenko
,
I. D.
, “
Regeneration of planarians: Experimental object
,”
Ontogenez
46
,
1
9
(
2015
).
102.
Srivastava
,
P.
,
Kane
,
A.
,
Harrison
,
C.
, and
Levin
,
M.
, “
A meta-analysis of bioelectric data in cancer, embryogenesis, and regeneration
,”
Bioelectricity
3
,
42
67
(
2021
).
103.
Stern
,
C. D.
, “
Experimental reversal of polarity in chick embryo epiblast sheets in vitro
,”
Exp. Cell Res.
140
,
468
471
(
1982
).
104.
Stocum
,
D. L.
, and
Cameron
,
J. A.
, “
Looking proximally and distally: 100 years of limb regeneration and beyond
,”
Dev. Dyn.
240
,
943
968
(
2011
).
105.
Stuckemann
,
T.
,
Cleland
,
J. P.
,
Werner
,
S.
,
Thi-Kim Vu
,
H.
,
Bayersdorf
,
R.
,
Liu
,
S. Y.
,
Friedrich
,
B.
,
Julicher
,
F.
, and
Rink
,
J. C.
, “
Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians
,”
Dev. Cell
40
,
248
263
(
2017
).
106.
Sullivan
,
K. G.
,
Emmons-Bell
,
M.
, and
Levin
,
M.
, “
Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration
,”
Commun. Integr. Biol.
9
,
e1192733
(
2016
).
107.
Sundelacruz
,
S.
,
Levin
,
M.
, and
Kaplan
,
D. L.
, “
Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells
,”
PLoS One
3
,
e3737
(
2008
).
108.
Sundelacruz
,
S.
,
Levin
,
M.
, and
Kaplan
,
D. L.
, “
Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells
,”
Tissue Eng., Part A
19
,
1889
1908
(
2013
).
109.
Sundelacruz
,
S.
,
Levin
,
M.
, and
Kaplan
,
D. L.
, “
Comparison of the depolarization response of human mesenchymal stem cells from different donors
,”
Sci. Rep.
5
,
18279
(
2015
).
110.
Sundelacruz
,
S.
,
Moody
,
A. T.
,
Levin
,
M.
, and
Kaplan
,
D. L.
, “
Membrane potential depolarization alters calcium flux and phosphate signaling during osteogenic differentiation of human mesenchymal stem cells
,”
Bioelectricity
1
,
56
66
(
2019
).
111.
Thommen
,
A.
,
Werner
,
S.
,
Frank
,
O.
,
Philipp
,
J.
,
Knittelfelder
,
O.
,
Quek
,
Y.
,
Fahmy
,
K.
,
Shevchenko
,
A.
,
Friedrich
,
B. M.
,
Julicher
,
F.
, and
Rink
,
J. C.
, “
Body size-dependent energy storage causes Kleiber's law scaling of the metabolic rate in planarians
,”
Elife
8
,
e38187
(
2019
).
112.
Thompson
,
B. J.
, “
From genes to shape during metamorphosis: A history
,”
Curr. Opin. Insect Sci.
43
,
1
10
(
2021
).
113.
Tseng
,
A. S.
,
Beane
,
W. S.
,
Lemire
,
J. M.
,
Masi
,
A.
, and
Levin
,
M.
, “
Induction of vertebrate regeneration by a transient sodium current
,”
J. Neurosci.
30
,
13192
13200
(
2010
).
114.
Turing
,
A. M.
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. B
237
,
37
72
(
1952
).
115.
Turing
,
A. M.
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. B
237
,
5
72
(
1953
).
116.
Vandenberg
,
L. N.
,
Morrie
,
R. D.
, and
Adams
,
D. S.
, “
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis
,”
Dev. Dyn.
240
,
1889
1904
(
2011
).
117.
Vandenberg
,
L. N.
,
Adams
,
D. S.
, and
Levin
,
M.
, “
Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology
,”
Dev. Dyn.
241
,
863
878
(
2012
).
118.
Werner
,
S.
,
Stuckemann
,
T.
,
Beiran
,
A. M.
,
Rink
,
J. C.
,
Julicher
,
F.
, and
Friedrich
,
B. M.
, “
Scaling and regeneration of self-organized patterns
,”
Phys. Rev. Lett.
114
,
138101
(
2015
).
119.
Wu
,
Z. S.
,
Cheng
,
H.
,
Jiang
,
Y.
,
Melcher
,
K.
, and
Xu
,
H. E.
, “
Ion channels gated by acetylcholine and serotonin: Structures, biology, and drug discovery
,”
Acta Pharmacol. Sin.
36
,
895
907
(
2015
).
120.
Yang
,
C. Y.
,
Bialecka-Fornal
,
M.
,
Weatherwax
,
C.
,
Larkin
,
J. W.
,
Prindle
,
A.
,
Liu
,
J.
,
Garcia-Ojalvo
,
J.
, and
Suel
,
G. M.
, “
Encoding membrane-potential-based memory within a microbial community
,”
Cell Syst.
10
,
417
423
(
2020
).
121.
Zhang
,
Y.
, and
Levin
,
M.
, “
Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient
,”
Dev. Dyn.
238
,
1923
1935
(
2009
).
122.
Zhao
,
M.
,
Song
,
B.
,
Pu
,
J.
,
Wada
,
T.
,
Reid
,
B.
,
Tai
,
G.
,
Wang
,
F.
,
Guo
,
A.
,
Walczysko
,
P.
,
Gu
,
Y.
,
Sasaki
,
T.
,
Suzuki
,
A.
,
Forrester
,
J. V.
,
Bourne
,
H. R.
,
Devreotes
,
P. N.
,
McCaig
,
C. D.
, and
Penninger
,
J. M.
, “
Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN
,”
Nature
442
,
457
460
(
2006
).
123.
Zhao
,
M.
,
Chalmers
,
L.
,
Cao
,
L.
,
Vieira
,
A. C.
,
Mannis
,
M.
, and
Reid
,
B.
, “
Electrical signaling in control of ocular cell behaviors
,”
Prog. Retinal Eye Res.
31
,
65
88
(
2012
).
124.
Zhao
,
S.
,
Mehta
,
A. S.
, and
Zhao
,
M.
, “
Biomedical applications of electrical stimulation
,”
Cell Mol. Life Sci.
77
,
2681
2699
(
2020
).
You do not currently have access to this content.