The human DNA molecule is a 2–m-long polymer collapsed into the micrometer space of the cell nucleus. This simple consideration rules out any “Maxwell demon”-like explanation of regulation in which a single regulatory molecule (e.g., a transcription factor) finds autonomously its way to the particular target gene whose expression must be repressed or enhanced. A gene-by-gene regulation is still more contrasting with the physical reality when in the presence of cell state transitions involving the contemporary expression change of thousands of genes. This state of affair asks for a statistical mechanics inspired approach where specificity arises from a selective unfolding of chromatin driving the rewiring of gene expression pattern. The arising of “expression waves” marking state transitions related to chromatin structural reorganization through self-organized critical control of whole-genome expression will be described in the present paper. We adopt as a model system the gene expression time course of a cancer cell (MCF-7) population exposed to an efficient stimulus causing a state transition in comparison with an ineffective stimulus. The obtained results will be put into the perspective of biological adaptive systems living on the edge of chaos.

1.
Bak
,
P.
, and
Chen
,
K.
, “
Self-organized criticality
,”
Sci. Am.
264
(
1
),
46
53
(
1991
).
2.
Bak
,
P.
,
Tang
,
C.
, and
Wiesenfeld
,
K.
, “
Self-organized criticality: An explanation of the 1/f noise
,”
Phys. Rev. Lett.
59
(
4
),
381
(
1987
).
3.
Bizzarri
,
M.
 et al, “
Gravity constraints drive biological systems toward specific organization patterns: Commitment of cell specification is constrained by physical cues
,”
Bioessays
40
(
1
),
1700138
(
2018
).
4.
Bohn
,
M.
 et al, “
Localization microscopy reveals expression-dependent parameters of chromatin nanostructure
,”
Biophys. J.
99
(
5
),
1358
1367
(
2010
).
5.
Chang
,
H. H.
,
Oh
,
P. Y.
,
Ingber
,
D. E.
, and
Huang
,
S.
, “
Multistable and multistep dynamics in neutrophil differentiation
,”
BMC Cell Biol.
7
(
1
),
11
(
2006
).
6.
Cremer
,
T.
 et al, “
Higher order chromatin architecture in the cell nucleus: On the way from structure to function
,”
Biol. Cell
96
(
8
),
555
567
(
2004
).
7.
Eckman
,
J. P.
, and
Ruelle
,
D.
, “
Fundamental limitations for estimating dimensions and Liapunov exponents in dynamical systems
,”
Physica D
56
,
185
187
(
1992
).
8.
Ferreiro
,
D. U.
,
Hegler
,
J. A.
,
Komives
,
E.
, and
Wolynes
,
P. G.
, “
On the role of frustration in the energy landscape of allosteric proteins
,”
Proc. Natl. Acad. Sci. USA
108
(
9
),
3499
3503
(
2011
).
9.
FitzHugh
,
R.
, “
Mathematical models of threshold phenomena in the nerve membrane
,”
Bull. Math. Biophys.
17
,
257
278
(
1955
).
10.
Giuliani
,
A.
 et al, “
Nonlinear signal analysis methods in the elucidation of protein sequence−structure relationships
,”
Chem. Rev.
102
(
5
),
1471
1492
(
2002
).
11.
Giuliani
,
A.
,
Tsuchiya
,
M.
, and
Yoshikawa
,
K.
, “
Self-organization of genome expression from embryo to terminal cell fate: Single-cell statistical mechanics of biological regulation
,”
Entropy
20
,
13
(
2018
).
12.
Goldstein
,
D. S.
, “
How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives
,”
Am. J. Physiol.
316
(
4
),
R301
R317
(
2019
).
13.
Gorban
,
A. N.
 et al, “
Dynamic and thermodynamic models of adaptation
,”
Phys. Life Rev.
37
,
17
64
(
2021
).
14.
Heist
,
T.
,
Fukaia
,
T.
, and
Levine
,
M.
, “
Large distances separate coregulated genes in living Drosophila embryos
,”
Proc. Natl. Acad. Sci, U. S. A.
116
,
15062
15067
(
2019
).
15.
Huang
,
S.
,
Ernberg
,
I.
, and
Kauffman
,
S.
, “
Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective
,”
Semin. Cell Dev. Biol.
20
(
7
),
869
876
(
2009
).
16.
Husson
,
F.
,
Le
,
S.
, and
Pages
,
J.
, “
Principal component analysis (PCA)
,” in
Exploratory Multivariate Analysis by Example Using R
(
CRC Press
,
Boca Raton, FL
,
2011
), pp.
1
59
.
17.
Izhikevich
,
E. M.
, and
FitzHugh
,
R.
, “
FitzHugh-Nagumo model
,”
Scholarpedia
1
,
1349
(
2006
).
18.
Jolicoeur
,
P.
, and
Mosimann
,
J. E.
, “
Size and shape variation in the painted turtle. A principal component analysis
,”
Growth
24
(
4
),
339
354
(
1960
); available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.279&rep=rep1&type=pdf.
19.
Krigerts
,
J.
 et al, “
Early critical phase transitions of pericentromere-associated domains in mcf-7 breast cancer cells committed to differentiation by heregulin
,”
Biophys. J.
120
(
14
),
711
714
(
2021
).
20.
Lyapunov
,
A.
,
Stability of Motion
(
Academic Press
,
New York
,
1966
).
21.
Ma
,
J.
 et al, “
Precursor criteria for noise-induced critical transitions in multi-stable systems
,”
Nonlinear Dyn.
101
(
1
),
21
35
(
2020
).
22.
MacArthur
,
B. D.
,
Ma'ayan
,
A.
, and
Lemischka
,
I. R.
, “
Toward stem cell systems biology: From molecules to networks and landscapes
,”
Cold Spring Harbor Symp. Quant. Biol.
73
,
211
215
(
2009
).
23.
Manetti
,
C.
,
Ceruso
,
M. A.
,
Giuliani
,
A.
,
Webber
,
C. L.
, and
Zbilut
,
J. P.
, “
Recurrence quantification analysis as a tool for characterization of molecular dynamics simulations
,”
Phys. Rev. E
59
(
1
),
992
(
1999
).
24.
Marr
,
C.
,
Zhou
,
J. X.
, and
Huang
,
S.
, “
Single-cell gene expression profiling and cell state dynamics: Collecting data, correlating data points and connecting the dots
,”
Curr. Opin. Biotechnol.
39
,
207
214
(
2016
).
25.
Mayer
,
R.
 et al, “
Common themes and cell type specific variations of higher order chromatin arrangements in the mouse
,”
BMC Cell Biol.
6
(
1
),
44
(
2005
).
26.
Mojtahedi
,
M.
 et al, “
Cell fate decision as high-dimensional critical state transition
,”
PLoS Biol.
14
(
12
),
e2000640
(
2016
).
27.
Nagashima
,
T.
 et al, “
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation
,”
J. Biol. Chem.
282
,
4045
4056
(
2007
).
28.
Nikolov
,
S.
 et al, “
Principal difference between stability and structural stability (robustness) as used in systems biology
,”
Nonlinear Dyn.
11
(
4
),
413
433
(
2007
); available at http://www.societyforchaostheory.org/ndpls/.
29.
Nurick
,
I.
,
Shamir
,
R.
, and
Elkon
,
R.
, “
Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions
,”
Epigenet. Chromatin
11
(
1
),
49
(
2018
).
30.
Orlando
,
G.
, and
Zimatore
,
G.
, “
Recurrence quantification analysis on a Kaldorian business cycle model
,”
Nonlinear Dyn.
100
(
1
),
785
801
(
2020
).
31.
Phillips
,
J. C.
, “
Scaling and self-organized criticality in proteins: Lysozyme c
,”
Phys. Rev. E
80
(
5
),
051916
(
2009
).
32.
Pizzi
,
E.
, and
Frontali
,
C.
, “
Low-complexity regions in plasmodium falciparum proteins
,”
Genome Research
11
(
2
),
218
229
(
2001
).
33.
Plenz
,
D.
, and
Niebur
,
E.
,
Criticality in Neural Systems
(
Wiley-VCH
,
Germany
,
2014
).
34.
Rajapakse
,
I.
 et al, “
The emergence of lineage-specific chromosomal topologies from coordinate gene regulation
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
6679
6684
(
2009
).
35.
Raser
,
J. M.
, and
O'Shea
,
E. K.
, “
Noise in gene expression: Origins, consequences, and control
,”
Science
309
(
5743
),
2010
2013
(
2005
).
36.
Saeki
,
Y.
 et al, “
Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells
,”
BMC Genomics
10
,
545
(
2009
).
37.
Sanchez
,
R.
, and
Newman
,
D. E.
, “
Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas
,”
Plasma Phys. Controlled Fusion
57
(
12
),
123002
(
2015
).
38.
Scheffer
,
M.
 et al, “
Anticipating critical transitions
,”
Science
338
(
6105
),
344
348
(
2012
).
39.
Shew
,
W. L.
 et al, “
Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
,”
J. Neurosci.
29
(
49
),
15595
15600
(
2009
).
40.
Takagi
,
S.
, and
Yoshikawa
,
K.
, “
Stepwise collapse of polyelectrolyte chains entrapped in a finite space as predicted by theoretical considerations
,”
Langmuir
15
,
4143
4146
(
1999
).
41.
Tan
,
Z. W.
,
Guarnera
,
E.
, and
Berezovsky
,
I. N.
, “
Exploring chromatin hierarchical organization via Markov state modelling
,”
PLoS Comput. Biol.
14
(
12
),
e1006686
(
2018
).
42.
Tsuchiya
,
M.
 et al, “
Emergent self-organized criticality in gene expression dynamics: Temporal development of global phase transition revealed in a cancer cell line
,”
PLoS One
11
,
e0128565
(
2015
).
43.
Tsuchiya
,
M.
,
Giuliani
,
A.
,
Hashimoto
,
M.
 et al, “
Self-organizing global gene expression regulated through criticality: Mechanism of the cell-fate change
,”
PLoS One
11
,
e0167912
(
2016
).
44.
Tsuchiya
,
M.
,
Giuliani
,
A.
, and
Yoshikawa
,
K.
, “
Cell-fate determination from embryo to cancer development: genomic mechanism elucidated
,”
Int. J. Mol. Sci.
21
(
13
),
4581
(
2020
).
45.
Tsuchiya
,
M.
,
Hashimoto
,
M.
,
Takenaka
,
Y.
 et al, “
Global genetic response in a cancer cell: Self-organized coherent expression dynamics
,”
PLoS One
9
,
e97411
(
2014
).
46.
Tsuchiya
,
M.
,
Vincent
,
P.
,
Giuliani
,
A.
 et al, “
Collective dynamics of specific gene ensembles crucial for neutrophil differentiation: the existence of genome vehicles revealed
,”
PLoS One
5
,
e12116
(
2010
).
47.
van der Knaap
,
J. A.
, and
Verrijzer
,
C. P.
, “
Undercover: Gene control by metabolites and metabolic enzymes
,”
Genes Dev.
30
,
2345
2369
(
2016
).
48.
Vickaryous
,
M. K.
, and
Hall
,
B. K.
, “
Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest
,”
Biol. Rev.
81
(
3
),
425
455
(
2006
).
49.
Webber
,
C. L.
, Jr.
, and
Zbilut
,
J. P.
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol.
76
(
2
),
965
973
(
1994
).
50.
Wijchers
,
P. J.
,
Geeven
,
G.
,
Eyres
,
M.
,
Bergsma
,
A. J.
,
Janssen
,
M.
,
Verstegen
,
M.
,
Zhu
,
Y.
,
Schell
,
Y.
,
Vermeulen
,
C.
,
De Wit
,
E.
, and
De Laat
,
W.
, “
Characterization and dynamics of pericentromere-associated domains in mice
,”
Genome Res.
25
(
7
),
958
969
(
2015
).
51.
Yoshikawa
,
K.
,
Takahashi
,
M.
,
Vasilevskaya
,
V. V.
, and
Khokhlov
,
A. R.
, “
Large discrete transition in a single DNA molecule appears continuous in the ensemble
,”
Phys. Rev. Lett.
76
,
3029
3031
(
1996
).
52.
Yoshikawa
,
K.
, and
Yoshikawa
,
Y.
, “
Compaction and condensation of DNA
,” in
Pharmaceutical Perspective of Nucleic Acid-Base Therapy
(
Taylor & Francis
,
Abingdon, UK
,
2002
), pp.
137
163
.
53.
Zhou
,
Y.
,
Gerrard
,
D. L.
,
Wang
,
J.
 et al, “
Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance
,”
Nat. Commun.
10
(
1
),
1522
(
2019
).
54.
Zimatore
,
G.
,
Gallotta
,
M. C.
,
Innocenti
,
L.
,
Guidetti
,
L.
, and
Baldari
,
C.
, “
Recurrence quantification analysis of heart rate variability during continuous incremental exercise test in obese subjects
,”
Chaos
30
(
3
),
03313
(
2020
).
55.
Zimatore
,
G.
,
Garilli
,
G.
,
Poscolieri
,
M.
,
Gizzi
,
F. T.
, and
Lazzari
,
M.
, “
The remarkable coherence between two Italian far away recording stations points to a role of acoustic emissions from crustal rocks for earthquake analysis
,”
Chaos
27
(
4
),
043101
(
2017
).
56.
Zinchenko
,
A.
,
Pyshkina
,
O.
,
Lezov
,
A.
,
Sergeyev
,
V.
, and
Yoshikawa
,
K.
, “
Single DNA molecules: Compaction and decompaction
,” in
DNA Interactions with Polymers and Surfactants
(
JohnWiley & Sons, Inc
.,
Hoboken, NJ
,
2008
), Chap. 3.
You do not currently have access to this content.