Current advances in DNA nanotechnology pinpoint exciting perspectives for the design of customized, patient-specific treatments. This advance is made possible by the exceptionally high precision and specificity that are typical for DNA base pairing on the one hand and our growing ability to harness those features in synthetic, DNA-based constructs on the other hand. Modern medicine may soon benefit from recent developments in this field, especially regarding the targeted delivery of drugs and the rational interference of synthetic DNA strands with cellular oligonucleotides. In this Review, we summarize selected examples from the area of DNA nanotechnology, where the development of precisely controlled, advanced functional mechanisms was achieved. To demonstrate the high versatility of these rationally designed structures, we categorize the dynamic DNA-based materials suggested for precision medicine according to four fundamental tasks: “hold & release,” “heal,” “detect & measure,” as well as “guide & direct.” In all the biomedical applications we highlight, DNA strands not only constitute structural building blocks but allow for creating stimuli-responsive objects, serve as an active cargo, or act as molecular control/guidance tools. Moreover, we discuss several issues that need to be considered when DNA-based structures are designed for applications in the field of precision medicine. Even though the majority of DNA-based objects have not been used in clinical settings yet, recent progress regarding the stability, specificity, and control over the dynamic behavior of synthetic DNA structures has advanced greatly. Thus, medical applications of those nanoscopic objects should be feasible in the near future.

1.
N. C.
Seeman
, “
Nucleic acid junctions and lattices
,”
J. Theor. Biol.
99
,
237
247
(
1982
).
2.
P. W.
Rothemund
, “
Folding DNA to create nanoscale shapes and patterns
,”
Nature
440
,
297
302
(
2006
).
3.
Q.
Jiang
,
S.
Liu
,
J.
Liu
,
Z. G.
Wang
, and
B.
Ding
, “
Rationally designed DNA‐origami nanomaterials for drug delivery in vivo
,”
Adv. Mater.
31
,
1804785
(
2019
).
4.
B.
Saccà
and
C. M.
Niemeyer
, “
DNA origami: The art of folding DNA
,”
Angew. Chem. Int. Ed. Engl.
51
,
58
66
(
2012
).
5.
R.
Jungmann
 et al, “
Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami
,”
Nano Lett.
10
,
4756
4761
(
2010
).
6.
J.
Schnitzbauer
,
M. T.
Strauss
,
T.
Schlichthaerle
,
F.
Schueder
, and
R.
Jungmann
, “
Super-resolution microscopy with DNA-PAINT
,”
Nature Protocols
12
,
1198
(
2017
).
7.
F.
Schueder
 et al, “
Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT
,”
Nature Commun.
8
,
2090
(
2017
).
8.
K.
Yehl
 et al, “
High-speed DNA-based rolling motors powered by RNase H
,”
Nature Nanotechnol.
11
,
184
190
(
2016
).
9.
G. M.
Church
,
Y.
Gao
, and
S.
Kosuri
, “
Next-generation digital information storage in DNA
,”
Science
337
,
1628
1628
(
2012
).
10.
C. E.
Castro
 et al, “
A primer to scaffolded DNA origami
,”
Nature Methods
8
,
221
(
2011
).
11.
N.
García-Romero
 et al, “
DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients
,”
Oncotarget
8
,
1416
(
2017
).
12.
B. P.
Mead
 et al, “
Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound
,”
J. Controlled Release
223
,
109
117
(
2016
).
13.
K.-R.
Kim
 et al, “
Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron
,”
Biomaterials
34
,
5226
5235
(
2013
).
14.
C. M.
Erben
,
R. P.
Goodman
, and
A. J.
Turberfield
, “
Single‐molecule protein encapsulation in a rigid DNA cage
,”
Angew. Chem. Int. Ed. Engl.
45
,
7414
7417
(
2006
).
15.
E. S.
Andersen
 et al, “
Self-assembly of a nanoscale DNA box with a controllable lid
,”
Nature
459
,
73
76
(
2009
).
16.
B.
Shi
 et al, “
Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems
,”
Biomacromolecules
18
,
2231
2246
(
2017
).
17.
Q.
Zhang
 et al, “
DNA origami as an in vivo drug delivery vehicle for cancer therapy
,”
ACS Nano
8
,
6633
6643
(
2014
).
18.
U.
Paiphansiri
 et al, “
Glutathione‐responsive DNA‐based nanocontainers through an ‘interfacial click’ reaction in inverse miniemulsion
,”
Macromol. Chem. Phys.
215
,
2457
2462
(
2014
).
19.
H.
Ijäs
,
I.
Hakaste
,
B.
Shen
,
M. A.
Kostiainen
, and
V.
Linko
, “
Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo
,”
ACS Nano
13
,
5959
5967
(
2019
).
20.
P.
Zhang
 et al, “
DNA‐hybrid‐gated multifunctional mesoporous silica nanocarriers for dual‐targeted and microRNA‐responsive controlled drug delivery
,”
Angew. Chem. Int. Ed. Engl.
126
,
2403
2407
(
2014
).
21.
C.
Kimna
 et al, “
DNA strands trigger the intracellular release of drugs from mucin-based nanocarriers
,”
ACS Nano
(published online).
22.
Y.
Ma
 et al, “
A telomerase‐responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin‐resistant cancer
,”
Angew. Chem. Int. Ed. Engl.
57
,
5389
5393
(
2018
).
23.
S. M.
Douglas
,
I.
Bachelet
, and
G. M.
Church
, “
A logic-gated nanorobot for targeted transport of molecular payloads
,”
Science
335
,
831
834
(
2012
).
24.
Y.
Amir
 et al, “
Universal computing by DNA origami robots in a living animal
,”
Nature Nanotechnol.
9
,
353
357
(
2014
).
25.
A.
Fire
 et al, “
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
,”
Nature
391
,
806
811
(
1998
).
26.
A. P.
McCaffrey
 et al, “
RNA interference in adult mice
,”
Nature
418
,
38
39
(
2002
).
27.
K. A.
Whitehead
,
R.
Langer
, and
D. G.
Anderson
, “
Knocking down barriers: Advances in siRNA delivery
,”
Nature Rev. Drug Discovery
8
,
129
138
(
2009
).
28.
R.
Kandil
 et al, “
Coming in and finding out: Blending receptor‐targeted delivery and efficient endosomal escape in a novel bio‐responsive siRNA delivery system for gene knockdown in pulmonary T cells
,”
Adv. Therap.
2
,
1900047
(
2019
).
29.
G. A.
Calin
 et al, “
Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers
,”
Proc. Natl. Acad. Sci. USA
101
,
2999
3004
(
2004
).
30.
J.
Conde
,
E. R.
Edelman
, and
N.
Artzi
, “
Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics?
Adv. Drug Delivery Rev.
81
,
169
183
(
2015
).
31.
T.
Di Ianni
 et al, “
Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs
,”
J. Controlled Release
309
,
1
10
(
2019
).
32.
J.
Conde
,
N.
Oliva
,
M.
Atilano
,
H. S.
Song
, and
N.
Artzi
, “
Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment
,”
Nature Mater.
15
,
353
363
(
2016
).
33.
X.
Deng
 et al, “
Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer
,”
Biomaterials
35
,
4333
4344
(
2014
).
34.
C.
Yao
 et al, “
Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy
,”
J. Controlled Release
232
,
203
214
(
2016
).
35.
R.
Li
,
R.
Hehlman
,
R.
Sachs
, and
P.
Duesberg
, “
Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells
,”
Cancer Genet. Cytogenet.
163
,
44
56
(
2005
).
36.
M. A.
Cortez
 et al, “
Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer
,”
Mol. Ther.
22
,
1494
1503
(
2014
).
37.
R. L.
Montgomery
 et al, “
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
,”
Circulation
124
,
1537
1547
(
2011
).
38.
T. G.
Hullinger
 et al, “
Inhibition of miR-15 protects against cardiac ischemic injury
,”
Circ. Res.
110
,
71
81
(
2012
).
39.
J.
Long
,
Y.
Wang
,
W.
Wang
,
B. H.
Chang
, and
F. R.
Danesh
, “
MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy
,”
J. Biol. Chem.
286
,
11837
11848
(
2011
).
40.
D.
Pramanik
 et al, “
Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice
,”
Mol. Cancer Therap.
10
,
1470
1480
(
2011
).
41.
C.
Han
 et al, “
MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET
,”
Tumor Biol.
36
,
6715
6723
(
2015
).
42.
B.
Yang
 et al, “
The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2
,”
Nature Med.
13
,
486
491
(
2007
).
43.
L.
Ma
,
J.
Teruya-Feldstein
, and
R. A.
Weinberg
, “
Tumour invasion and metastasis initiated by microRNA-10b in breast cancer
,”
Nature
449
,
682
688
(
2007
).
44.
L.
Ma
 et al, “
Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model
,”
Nature Biotechnol.
28
,
341
347
(
2010
).
45.
R.
Devulapally
 et al, “
Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy
,”
ACS Nano
9
,
2290
2302
(
2015
).
46.
Y.
Pekarsky
and
C. M.
Croce
, “
Role of miR-15/16 in CLL
,”
Cell Death Differentiation
22
,
6
11
(
2015
).
47.
G. A.
Calin
 et al, “
MiR-15a and miR-16-1 cluster functions in human leukemia
,”
Proc. Natl. Acad. Sci. USA
105
,
5166
5171
(
2008
).
48.
G.
Reid
 et al, “
Targeted delivery of a synthetic microRNA-based mimic as an approach to cancer therapy
,”
Cancer Res.
75
,
3976
3976
(
2015
).
49.
L.-X.
Yan
 et al, “
MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis
,”
RNA
14
,
2348
2360
(
2008
).
50.
J. F.
Barger
and
S. P.
Nana-Sinkam
, “
MicroRNA as tools and therapeutics in lung cancer
,”
Respir. Med.
109
,
803
812
(
2015
).
51.
Y.-E.
Seo
 et al, “
Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma
,”
Biomaterials
201
,
87
98
(
2019
).
52.
D.
Wang
 et al, “
Local microRNA modulation using a novel anti-miR-21–eluting stent effectively prevents experimental in-stent restenosis
,”
Arterioscler. Thromb. Vasc. Biol.
35
,
1945
1953
(
2015
).
53.
F.
Li
,
J.
Tang
,
J.
Geng
,
D.
Luo
, and
D
Yang
, “
Polymeric DNA hydrogel: Design, synthesis and applications
,”
Prog. Polymer Science
98
,
101163
(
2019
).
54.
D.
Shu
 et al, “
Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology
,”
ACS Nano
9
,
9731
9740
(
2015
).
55.
A.
Bertucci
 et al, “
Tumor-targeting, microRNA-silencing porous silicon nanoparticles for ovarian cancer therapy
,”
ACS Appl. Materials Interfaces
11
,
23926
23937
(
2019
).
56.
B.
Maurer
 et al, “
MicroRNA‐29, a key regulator of collagen expression in systemic sclerosis
,”
Arthritis Rheumatism
62
,
1733
1743
(
2010
).
57.
X.
Huang
 et al, “
Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: A novel therapeutic strategy in acute myeloid leukemia
,”
Clin. Cancer Res.
19
,
2355
2367
(
2013
).
58.
A. F.
Ibrahim
 et al, “
MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma
,”
Cancer Res.
71
,
5214
5224
(
2011
).
59.
G.
Misso
 et al, “
Mir-34: a new weapon against cancer?
Mol. Ther. Nucleic Acids
3
,
e195
(
2014
).
60.
H.
Li
 et al, “
Rational design of polymeric hybrid micelles with highly tunable properties to co‐deliver microRNA‐34a and vismodegib for melanoma therapy
,”
Adv. Funct. Mater.
25
,
7457
7469
(
2015
).
61.
B.
Herrera
 et al, “
Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes
,”
Diabetologia
53
,
1099
1109
(
2010
).
62.
M.
Trajkovski
 et al, “
MicroRNAs 103 and 107 regulate insulin sensitivity
,”
Nature
474
,
649
653
(
2011
).
63.
C. L.
Jopling
,
M.
Yi
,
A. M.
Lancaster
,
S. M.
Lemon
, and
P.
Sarnow
, “
Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA
,”
Science
309
,
1577
1581
(
2005
).
64.
C.
Esau
 et al, “
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
,”
Cell Metab.
3
,
87
98
(
2006
).
65.
J.
Krützfeldt
 et al, “
Silencing of microRNAs in vivo with ‘antagomirs’
,”
Nature
438
,
685
689
(
2005
).
66.
J.
Elmén
 et al, “
LNA-mediated microRNA silencing in non-human primates
,”
Nature
452
,
896
899
(
2008
).
67.
H.-c.
Yu
 et al, “
Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients
,”
Prog. Neuro-Psychopharmacol. Biol. Psychiatry
63
,
23
29
(
2015
).
68.
Y.
Su
 et al, “
Intranasal delivery of targeted nanoparticles loaded with mir-132 to brain for the treatment of neurodegenerative diseases
,”
Front. Pharmacol.
11
,
1165
(
2020
).
69.
J.
Devalliere
 et al, “
Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation
,”
FASEB J.
28
,
908
922
(
2014
).
70.
M.-K.
Kim
 et al, “
Tumor-suppressing miR-141 gene complex-loaded tissue-adhesive glue for the locoregional treatment of hepatocellular carcinoma
,”
Theranostics
8
,
3891
(
2018
).
71.
H.
Tran
 et al, “
Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141
,”
Biosensors Bioelectronics
49
,
164
169
(
2013
).
72.
Q.
Zhang
,
Y.
Feng
,
P.
Liu
, and
J.
Yang
, “
MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer
,”
Tumor Biol.
39
,
1010428317711312
(
2017
).
73.
Q.
Jiang
 et al, “
Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo
,”
J. Cancer Res. Clin. Oncol.
145
,
2951
2967
(
2019
).
74.
K.
Shimbo
 et al, “
Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration
,”
Biochem. Biophys. Res. Commun.
445
,
381
387
(
2014
).
75.
R. M.
O'Connell
,
A. A.
Chaudhuri
,
D. S.
Rao
, and
D.
Baltimore
, “
Inositol phosphatase SHIP1 is a primary target of miR-155
,”
Proc. Natl. Acad. Sci. USA
106
,
7113
7118
(
2009
).
76.
C. J.
Cheng
 et al, “
MicroRNA silencing for cancer therapy targeted to the tumour microenvironment
,”
Nature
518
,
107
110
(
2015
).
77.
Y. K.
Reshetnyak
,
O. A.
Andreev
,
U.
Lehnert
, and
D. M.
Engelman
, “
Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix
,”
Proc. Natl. Acad. Sci. USA
103
,
6460
6465
(
2006
).
78.
I. A.
Babar
 et al, “
Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma
,”
Proc. Natl. Acad. Sci. USA
109
,
E1695
E1704
(
2012
).
79.
Y.
Gu
 et al, “
miR-192-5p silencing by genetic aberrations is a key event in hepatocellular carcinomas with cancer stem cell features
,”
Cancer Res.
79
,
941
953
(
2019
).
80.
S. Y.
Wu
 et al, “
A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer
,”
Nature Commun.
7
,
11169
(
2016
).
81.
B.
De Craene
and
B.
Berx
, “
Regulatory networks defining EMT during cancer initiation and progression
,”
Nature Rev. Cancer
13
,
97
110
(
2013
).
82.
C. V.
Pecot
 et al, “
Tumour angiogenesis regulation by the miR-200 family
,”
Nature Commun.
4
,
2427
(
2013
).
83.
D.
Yang
 et al, “
Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer
,”
Cancer Cell
23
,
186
199
(
2013
).
84.
A. N.
Hossian
 et al, “
Delivery of miR-143 and miR-506 with novel nano carrier to arrest cell cycle in lung cancer
,”
Cancer Res.
79
,
4429
4429
(
2019
).
85.
I.
Keklikoglou
 et al, “
MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways
,”
Oncogene
31
,
4150
4163
(
2012
).
86.
M.
Nishimura
 et al, “
Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment
,”
Cancer Discovery
3
,
1302
1315
(
2013
).
87.
D.
Mathur
and
I. L.
Medintz
, “
The growing development of DNA nanostructures for potential healthcare‐related applications
,”
Advanced Healthcare Materials
8
,
1801546
(
2019
).
88.
H.-M.
Meng
 et al, “
Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy
,”
Chem. Soc. Rev.
45
,
2583
2602
(
2016
).
89.
B.
Jin
 et al, “
Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection
,”
Biosensors Bioelectronics
90
,
525
533
(
2017
).
90.
M.
He
,
Z.
Li
,
Y.
Ge
, and
Z.
Liu
, “
Portable upconversion nanoparticles-based paper device for field testing of drug abuse
,”
Anal. Chem.
88
,
1530
1534
(
2016
).
91.
S.
Dai
,
S.
Wu
,
N.
Duan
, and
Z.
Wang
, “
A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods
,”
Microchim. Acta
183
,
1909
1916
(
2016
).
92.
J.
Zhao
 et al, “
Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells
,”
J. Am. Chem. Soc.
140
,
578
581
(
2018
).
93.
K.
Leung
,
K.
Chakraborty
,
A.
Saminathan
, and
Y.
Krishnan
, “
A DNA nanomachine chemically resolves lysosomes in live cells
,”
Nature Nanotechnol
14
,
176
183
(
2019
).
94.
M.
Xiong
 et al, “
A membrane-anchored fluorescent probe for detecting K+ in the cell microenvironment
,”
Chem. Commun.
52
,
4679
4682
(
2016
).
95.
L.
Qiu
 et al, “
Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment
,”
J. Am. Chem. Soc.
136
,
13090
13093
(
2014
).
96.
P.
Zhang
 et al, “
In situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release
,”
ACS Nano
9
,
789
798
(
2015
).
97.
T.
Funck
,
F.
Nicoli
,
A.
Kuzyk
, and
T.
Liedl
, “
Sensing picomolar concentrations of RNA using switchable plasmonic chirality
,”
Angew. Chem. Int. Ed. Engl.
130
,
13683
13686
(
2018
).
98.
M. A.
Koussa
,
K.
Halvorsen
,
A.
Ward
, and
W. P.
Wong
, “
DNA nanoswitches: A quantitative platform for gel-based biomolecular interaction analysis
,”
Nature Methods
12
,
123
126
(
2015
).
99.
S.
Ranallo
,
A.
Porchetta
, and
F.
Ricci
, “
DNA-based scaffolds for sensing applications
,”
Anal. Chem.
91
,
44
59
(
2019
).
100.
L.
Zhou
 et al, “
Programmable low-cost DNA-based platform for viral RNA detection
,” bioRxiv (
2020
).
101.
E. W.
Ng
 et al, “
Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease
,”
Nature Rev. Drug Discovery
5
,
123
132
(
2006
).
102.
J. A.
Díaz
and
J. M.
Gibbs‐Davis
, “
Sharpening the thermal release of DNA from nanoparticles: Towards a sequential release strategy
,”
Small
9
,
2862
2871
(
2013
).
103.
C.
Kimna
and
O.
Lieleg
, “
Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology
,”
J. Controlled Release
304
,
19
28
(
2019
).
104.
C.
Nowald
,
B.
Käsdorf
, and
O.
Lieleg
, “
Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregation
,”
J. Controlled Release
246
,
71
78
(
2017
).
105.
D.
Scalise
 et al, “
Programming the sequential release of DNA
,”
ACS Synthetic Biol.
9
,
749
755
(
2020
).
106.
A.
Razin
and
J.
Friedman
, “
DNA methylation and its possible biological roles
,”
Prog. Nucleic Acid Res. Mol. Biol.
25
,
33
52
(
1981
).
107.
R.
Medzhitov
, “
Recognition of microorganisms and activation of the immune response
,”
Nature
449
,
819
826
(
2007
).
108.
V. J.
Schuller
 et al.,
Cellular immunostimulation by CpG-sequence-coated DNA origami structures
,”
ACS Nano
5
,
9696
9702
(
2011
).
109.
Y.
Qu
 et al, “
Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs
,”
ACS Appl. Materials Interfaces
9
,
20324
20329
(
2017
).
110.
E.
Hong
 et al, “
Structure and composition define immunorecognition of nucleic acid nanoparticles
,”
Nano Lett.
18
,
4309
4321
(
2018
).
111.
W.
Yu
 et al, “
Enhanced immunostimulatory activity of a cytosine-phosphate-guanosine immunomodulator by the assembly of polymer DNA wires and spheres
,”
ACS Appl. Materials Interfaces
12
,
17167
17176
(
2020
).
112.
M. R.
Javed
 et al, “
CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms
,”
Curr. Microbiol.
75
,
1675
1683
(
2018
).
113.
Y.
Wu
 et al, “
Correction of a genetic disease in mouse via use of CRISPR-Cas9
,”
Cell Stem Cell
13
,
659
662
(
2013
).
114.
C.
Long
 et al, “
Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
,”
Science
345
,
1184
1188
(
2014
).
115.
B.
Lee
 et al, “
Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours
,”
Nature Biomed. Eng.
2
,
497
507
(
2018
).
116.
W.
Xue
 et al, “
CRISPR-mediated direct mutation of cancer genes in the mouse liver
,”
Nature
514
,
380
384
(
2014
).
117.
W.
Sun
 et al, “
Self‐assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing
,”
Angew. Chem. Int. Ed. Engl.
127
,
12197
12201
(
2015
).
118.
J.
Zhuang
 et al, “
Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy
,”
Nucleic Acids Res.
48
,
8870
8882
(
2020
).
119.
Q.
Dai
 et al, “
Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors
,”
ACS Nano
12
,
8423
8435
(
2018
).
120.
A. E.
Marras
 et al, “
Cation-activated avidity for rapid reconfiguration of DNA nanodevices
,”
ACS Nano
12
,
9484
9494
(
2018
).
121.
P. M.
McTigue
,
R J.
Peterson
, and
J. D.
Kahn
, “
Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation
,”
Biochemistry
43
,
5388
5405
(
2004
).
122.
E.
Blanco
,
H.
Shen
, and
M.
Ferrari
, “
Principles of nanoparticle design for overcoming biological barriers to drug delivery
,”
Nature Biotechnol.
33
,
941
(
2015
).
123.
M.
Madsen
and
K. V.
Gothelf
, “
Chemistries for DNA nanotechnology
,”
Chem. Rev.
119
,
6384
6458
(
2019
).
124.
V.
Cassinelli
 et al, “
One‐step formation of ‘chain‐armor’‐stabilized DNA nanostructures
,”
Angew. Chem. Int. Ed. Engl.
54
,
7795
7798
(
2015
).
125.
T.
Gerling
,
M.
Kube
,
B.
Kick
, and
H.
Dietz
, “
Sequence-programmable covalent bonding of designed DNA assemblies
,”
Science Adv.
4
,
eaau1157
(
2018
).
126.
S.
Raniolo
 et al, “
Cellular uptake of covalent and non-covalent DNA nanostructures with different sizes and geometries
,”
Nanoscale
11
,
10808
10818
(
2019
).
127.
N.
Ponnuswamy
 et al, “
Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation
,”
Nature Commun.
8
,
15654
(
2017
).
128.
F. M.
Anastassacos
,
Z.
Zhao
,
Y.
Zeng
, and
W. M.
Shih
, “
Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation
,”
J. Am. Chem. Soc.
142
,
3311
3315
(
2020
).
129.
H.
Auvinen
 et al, “
Protein coating of DNA nanostructures for enhanced stability and immunocompatibility
,”
Advanced Healthcare Materials
6
,
1700692
(
2017
).
130.
A. l.
Lacroix
,
T G.
Edwardson
,
M. A.
Hancock
,
M. D.
Dore
, and
H. F.
Sleiman
, “
Development of DNA nanostructures for high-affinity binding to human serum albumin
,”
J. Am. Chem. Soc.
139
,
7355
7362
(
2017
).
131.
J.
Mikkila
 et al, “
Virus-encapsulated DNA origami nanostructures for cellular delivery
,”
Nano Lett.
14
,
2196
2200
(
2014
).
132.
S. D.
Perrault
and
W. M.
Shih
, “
Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability
,”
ACS Nano
8
,
5132
5140
(
2014
).
133.
W.
Poon
,
B. R.
Kingston
,
B.
Ouyang
,
W.
Ngo
, and
W. C.
Chan
, “
A framework for designing delivery systems
,”
Nature Nanotechnol.
15
,
1
11
(
2020
).
134.
P. A.
Netti
,
D. A.
Berk
,
M. A.
Swartz
,
A. J.
Grodzinsky
, and
R. K.
Jain
, “
Role of extracellular matrix assembly in interstitial transport in solid tumors
,”
Cancer Res.
60
,
2497
2503
(
2000
).
135.
B. R.
Madhanagopal
,
S.
Zhang
,
E.
Demirel
,
H.
Wady
, and
A. R.
Chandrasekaran
, “
DNA nanocarriers: Programmed to deliver
,”
Trends Biochem. Sci.
43
,
997
1013
(
2018
).
136.
E. A.
Sykes
 et al, “
Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
,”
Proc. Natl. Acad. Sci USA
113
,
E1142
E1151
(
2016
).
137.
W.
Poon
 et al, “
Elimination pathways of nanoparticles
,”
ACS Nano
13
,
5785
5798
(
2019
).
You do not currently have access to this content.