Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell–Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.

1.
M. S.
Talary
,
K. I.
Mills
,
T.
Hoy
,
A. K.
Burnett
, and
R.
Pethig
, “
Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells
,”
Med. Biol. Eng. Comput.
33
,
235
(
1995
).
2.
M.
Stephens
,
M. S.
Talary
,
R.
Pethig
,
A. K.
Burnett
, and
K. I.
Mills
, “
The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests
,”
Bone Marrow Transplant.
18
(
4
),
777
782
(
1996
).
3.
Y.
Huang
,
J.
Yang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R.
Gascoyne
, “
The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation
,”
J. Hematother. Stem Cell Res.
8
(
5
),
481
490
(
1999
).
4.
A. P.
Lee
,
M.
Aghaamoo
,
T. N. G.
Adams
, and
L. A.
Flanagan
, “
It's electric: When technology gives a boost to stem cell science
,”
Curr. Stem Cell Rep.
4
(
2
),
116
126
(
2018
).
5.
T. N. G.
Adams
,
A. Y. L.
Jiang
,
P. D.
Vyas
, and
L. A.
Flanagan
, “
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis
,”
Methods
133
,
91
103
(
2018
).
6.
T. N. G.
Adams
,
P. A.
Turner
,
A. V.
Janorkar
,
F.
Zhao
, and
A. R.
Minerick
, “
Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment
,”
Biomicrofluidics
8
(
5
),
054109
(
2014
).
7.
L. A.
Flanagan
 et al, “
Unique dielectric properties distinguish stem cells and their differentiated progeny
,”
Stem Cells
26
(
3
),
656
665
(
2008
).
8.
A.
Ismail
,
M. P.
Hughes
,
H. J.
Mulhall
,
R. O.
Oreffo
, and
F. H.
Labeed
, “
Characterization of human skeletal stem and bone cell populations using dielectrophoresis
,”
J. Tissue Eng. Regen. Med.
9
(
2
),
162
168
(
2015
).
9.
H.
Song
 et al, “
Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis
,”
Lab Chip
15
,
1320
(
2015
).
10.
A. Y. L.
Jiang
 et al, “
High-throughput continuous dielectrophoretic separation of neural stem cells
,”
Biomicrofluidics
13
(
6
),
064111
(
2019
).
11.
H. A.
Pohl
, “
The motion and precipitation of suspensoids in divergent electric fields
,”
J. Appl. Phys.
22
(
7
),
869
871
(
1951
).
12.
H. A.
Pohl
and
I.
Hawk
, “
Separation of living and dead cells by dielectrophoresis
,”
Science
152
(
3722
),
647
649
(
1966
).
13.
B. H.
Lapizco-Encinas
,
B. A.
Simmons
,
E. B.
Cummings
, and
Y.
Fintschenko
, “
Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators
,”
Anal. Chem.
76
(
6
),
1571
1579
(
2004
).
14.
Z. R.
Gagnon
, “
Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells
,”
Electrophoresis
32
(
18
),
2466
2487
(
2011
).
15.
Z.
Cao
 et al, “
Dielectrophoresis-based protein enrichment for a highly sensitive immunoassay using Ag/SiO2 nanorod arrays
,”
Small
14
(
12
),
1703265
(
2018
).
16.
R.
Pethig
, “
Review—Where is dielectrophoresis (DEP) going?
J. Electrochem. Soc.
164
(
5
),
B3049
B3055
(
2016
).
17.
N. A.
Rahman
,
F.
Ibrahim
, and
B.
Yafouz
, “
Dielectrophoresis for biomedical sciences applications: A review
,”
Sensors
17
,
449
(
2017
).
18.
A.
Thiel
,
A.
Scheffold
, and
A.
Radbruch
, “
Immunomagnetic cell sorting - pushing the limits
,”
Immunotechnology
4
,
89
96
(
1998
).
19.
T.
Zhou
,
Y.
Ming
,
S. F.
Perry
, and
S.
Tatic-Lucic
, “
Estimation of the physical properties of neurons and glial cells using dielectrophoresis crossover frequency
,”
J. Biol. Phys.
42
,
571
(
2016
).
20.
E. O.
Adekanmbi
,
M. W.
Ueti
,
B.
Rinaldi
,
C. E.
Suarez
, and
S. K.
Srivastava
, “
Insulator-based dielectrophoretic diagnostic tool for babesiosis
,”
Biomicrofluidics
10
(
3
),
033108
(
2016
).
21.
P.
Weng
,
I.
Chen
,
C.
Yeh
,
P.
Chen
, and
J.
Juang
, “
Size-dependent dielectrophoretic crossover frequency of spherical particles
,”
Biomicrofluidics
10
,
011909
(
2016
).
22.
R.
Pethig
and
D. B.
Kell
, “
The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology
,”
Phys. Med. Biol.
32
,
933
(
1987
).
23.
D.
Kim
,
M.
Sonker
, and
A.
Ros
, “
Dielectrophoresis: From molecular to micrometer-scale analytes
,”
Anal. Chem.
91
(
1
),
277
295
(
2019
).
24.
S.
Chang
and
Y. H.
Cho
, “
A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array
,”
Lab Chip
8
(
11
),
1930
1936
(
2008
).
25.
V.
Calero
,
P.
Garcia-Sanchez
,
C.
Honrado
,
A.
Ramos
, and
H.
Morgan
, “
AC electrokinetic biased deterministic lateral displacement for tunable particle separation
,”
Lab Chip
19
(
8
),
1386
1396
(
2019
).
26.
C.
Huang
,
S. M.
Santana
,
H.
Liu
,
N. H.
Bander
,
B. G.
Hawkins
, and
B. J.
Kirby
, “
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture
,”
Electrophoresis
34
(
20–21
),
2970
2979
(
2013
).
27.
N.
Allahrabbi
,
Y. S.
Chia
,
M. S.
Saifullah
,
K. M.
Lim
, and
L. Y.
Yung
, “
A hybrid dielectrophoretic system for trapping of microorganisms from water
,”
Biomicrofluidics
9
(
3
),
034110
(
2015
).
28.
S.
Yan
,
J.
Zhang
,
D.
Yuan
, and
W.
Li
, “
Hybrid microfluidics combined with active and passive approaches for continuous cell separation
,”
Electrophoresis
38
(
2
),
238
249
(
2017
).
29.
G. H.
Markx
,
L.
Carney
,
M.
Littlefair
,
A.
Sebastian
, and
A. M.
Buckle
, “
Recreating the hematon: Microfabrication of artificial haematopoietic stem cell microniches in vitro using dielectrophoresis
,”
Biomed. Microdevices
11
(
1
),
143
150
(
2009
).
30.
R.
Arya
,
H.
Komal
,
A.
Sankaranarayanan
, and
R.
Krishnamurthy
, “
Applications of dielectrophoresis in the field of medical sciences
,”
Int. J. S. Res. Sci. Technol.
4
,
328
341
(
2019
).
31.
E. O.
Adekanmbi
and
S. K.
Srivastava
, “
Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms
,”
Lab Chip
16
,
2148
(
2016
).
32.
G. R.
Ballantyne
and
P. N.
Holtham
, “
Application of dielectrophoresis for the separation of minerals
,”
Miner. Eng.
23
(
4
),
350
358
(
2010
).
33.
E. G.
Cen
,
C.
Dalton
,
Y.
Li
,
S.
Adamia
,
L. M.
Pilarski
, and
K. V. I. S.
Kaler
, “
A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells
,”
J. Microbiol. Methods
58
(
3
),
387
401
(
2004
).
34.
H.
Du
,
W. H.
Li
,
D. F.
Chen
, and
C.
Shu
, “
Manipulation of bioparticles using traveling wave dielectrophoresis: Numerical approach
,”
Int. J. Mech. Mater. Design
1
(
2
),
115
130
(
2004
).
35.
T.
Sun
,
H.
Morgan
, and
N. G.
Green
, “
Analytical solutions of AC electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
76
(
4
),
046610
(
2007
).
36.
E.
Choi
,
B.
Kim
, and
J.-Y.
Park
, “
Extremely large-area travelling-wave dielectrophoresis microbead separator using a multilayered bus bar
,”
J. Sensor Sci. Technol.
18
(
2
),
139
146
(
2009
).
37.
M.
Marczak
and
H.
Diesinger
, “
Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer
,”
J. Appl. Phys.
105
(
12
),
124511
(
2009
).
38.
I. F.
Cheng
,
V. E.
Froude
,
Y.
Zhu
,
H.-C.
Chang
, and
H.-C.
Chang
, “
A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis
,”
Lab Chip
9
(
22
),
3193
3201
(
2009
).
39.
C.
Eunpyo
,
K.
Byungkyu
, and
P.
Jungyul
, “
High-throughput microparticle separation using gradient traveling wave dielectrophoresis
,”
J. Micromech. Microeng.
19
(
12
),
125014
(
2009
).
40.
B.
Zhu
and
S. K.
Murthy
, “
Stem cell separation technologies
,”
Curr. Opin. Chem. Eng.
2
(
1
),
3
7
(
2014
).
41.
J.
Yang
 et al, “
Dielectrophoresis-based microfluidic separation and detection systems
,”
Int. J. Adv. Manuf. Syst.
3
(
2
),
1
12
(
2000
).
42.
R.
Pethig
,
A.
Menachery
,
S.
Pells
, and
P. De
Sousa
, “
Dielectrophoresis: A review of applications for stem cell research
,”
BioMed Res. Int.
2010
,
182581
.
43.
E. O.
Adekanmbi
,
A. T.
Giduthuri
,
S.
Waymire
, and
S. K.
Srivastava
, “
Utilization of dielectrophoresis for the quantification of rare earth elements adsorbed on Cupriavidus necator
,”
ACS Sustainable Chem. Eng.
8
(
3
),
1353
1361
(
2020
).
44.
N.
Alinezhadbalalami
,
T. A.
Douglas
,
N.
Balani
,
S. S.
Verbridge
, and
R. V.
Davalos
, “
The feasibility of using dielectrophoresis for isolation of glioblastoma subpopulations with increased stemness
,”
Electrophoresis
40
(
18–19
),
2592
2600
(
2019
).
45.
H.
Morgan
and
N. G.
Green
,
AC Electrokinetics Colloids and Nanoparticles
(
Research Studies Press
,
2003
).
46.
Y.
Feldman
,
I.
Ermolina
, and
Y.
Hayashi
, “
Time domain dielectric spectroscopy study of biological systems
,”
IEEE Trans. Dielectr. Electr. Insul.
10
(
5
),
728
753
(
2003
).
47.
B.
Bavnbek
,
B.
Klösgen
,
J.
Larsen
,
F.
Pociot
, and
E.
Renström
,
BetaSys: Systems Biology of Regulated Exocytosis in Pancreatic Beta-Cells
(
Springer
,
2011
).
48.
J.
Gimsa
,
P.
Marszalek
,
U.
Loewe
, and
T. Y.
Tsong
, “
Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells
,”
Biophys. J.
60
,
749
(
1991
).
49.
L.
Yang
,
P. P.
Banada
,
A. K.
Bhunia
, and
R.
Bashir
, “
Effects of dielectrophoresis on growth, viability and immuno-reactivity of Listeria monocytogenes
,”
J. Biol. Eng.
2
,
6
(
2008
).
50.
J.
Zhang
,
Z.
Song
,
Q.
Liu
, and
Y.
Song
, “
Recent advances in dielectrophoresis-based cell viability assessment
,”
Electrophoresis
41
(
10-11
),
917
932
(
2020
).
51.
V.
Nerguizian
,
I.
Stiharu
,
N.
Al-Azzam
,
B.
Yassine-Diab
, and
A.
Alazzam
, “
The effect of dielectrophoresis on living cells: Crossover frequencies and deregulation in gene expression
,”
The Analyst
144
(
12
),
3853
3860
(
2019
).
52.
J.
Lu
,
C. A.
Barrios
,
A. R.
Dickson
,
J. L.
Nourse
,
A. P.
Lee
, and
L. A.
Flanagan
, “
Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells
,”
Integr. Biol. (Camb)
4
(
10
),
1223
1236
(
2012
).
53.
M. J.
Łos
,
A.
Skubis
, and
S.
Ghavami
, “
Stem cells
,” in
Stem Cells and Biomaterials for Regenerative Medicine
, edited by
M. J.
Łos
,
A.
Hudecki
, and
E.
Wiecheć
(
Academic
,
2019
), Chap. 2, pp.
5
16
.
54.
W.
Zakrzewski
,
M.
Dobrzyński
,
M.
Szymonowicz
, and
Z.
Rybak
, “
Stem cells: past, present, and future
,”
Stem Cell Res. Ther.
10
(
1
),
68
(
2019
).
55.
K.
MacCord
, “
Germ layers
,” in
Embryo Project Encyclopedia
(
Arizona State University
,
2003
).
56.
A. E.
EL Barky
,
E. M. M.
Ali
, and
T. M.
Mohamed
, “
Stem cells, classifications and their clinical applications
,”
Am. J. Pharmacol. Ther.
1
(
1
),
001
007
(
2017
).
57.
A.
Hima Bindu
and
B.
Srilatha
, “
Potency of various types of stem cells and their transplantation
,”
J. Stem Cell Res. Ther.
1
(
3
),
115
(
2011
).
58.
A.
Biswas
and
R.
Hutchins
, “
Embryonic stem cells
,”
Stem Cells Dev.
16
(
2
),
213
222
(
2007
).
59.
A.
El-Badawy
 et al, “
Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells
,”
Sci. Rep.
6
(
1
),
37801
(
2016
).
60.
R.
Pethig
, “
Dielectrophoresis: Status of the theory, technology, and applications
,”
Biomicrofluidics
4
(
2
),
022811
(
2010
).
61.
J.
Yoshioka
,
Y.
Ohsugi
,
T.
Yoshitomi
,
T.
Yasukawa
,
N.
Sasaki
, and
K.
Yoshimoto
, “
Label-free rapid separation and enrichment of bone marrow-derived mesenchymal stem cells from a heterogeneous cell mixture using a dielectrophoresis device
,”
Sensors
18
,
3007
(
2018
).
62.
A. Y.
Wu
and
D. M.
Morrow
, “
Clinical use of dieletrophoresis separation for live adipose derived stem cells
,”
J. Transl. Med.
10
,
99
(
2012
).
63.
J.
Vykoukal
,
D. M.
Vykoukal
,
S.
Freyberg
,
E. U.
Alt
, and
P.
Gascoyne
, “
Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation
,”
Lab Chip
8
,
1386
(
2008
).
64.
D. Y.
Gao
 et al, “
Fundamental cryobiology of human hematopoietic progenitor cells I: Osmotic characteristics and volume distribution
,”
Cryobiology
36
(
1
),
40
48
(
1998
).
65.
A. I.
Caplan
, “
Mesenchymal stem cells: Time to change the name!
,”
Stem Cells Transl. Med.
6
,
1445
1451
(
2017
).
66.
S. D.
Subramony
 et al, “
The guidance of stem cell differentiation by substrate alignment and mechanical stimulation
,”
Biomaterials
34
(
8
),
1942
1953
(
2013
).
67.
C. K.
Kuo
and
R. S.
Tuan
, “
Mechanoactive tenogenic differentiation of human mesenchymal stem cells
,”
Tissue Eng. Part A
14
(
10
),
1615
1627
(
2008
).
68.
A. I.
Goncalves
 et al, “
Understanding the role of growth factors in modulating stem cell tenogenesis
,”
PLoS One
8
(
12
),
e83734
(
2013
).
69.
N. R.
Schiele
,
J. E.
Marturano
, and
C. K.
Kuo
, “
Mechanical factors in embryonic tendon development: Potential cues for stem cell tenogenesis
,”
Curr. Opin. Biotechnol.
24
(
5
),
834
840
(
2013
).
70.
Y. H.
Li
 et al, “
The role of scleraxis in fate determination of mesenchymal stem cells for tenocyte differentiation
,”
Sci. Rep.
5
,
13149
(
2015
).
71.
J. P.
Brown
,
T. V.
Galassi
,
M.
Stoppato
,
N. R.
Schiele
, and
C. K.
Kuo
, “
Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors
,”
Stem Cell Res. Ther.
6
(
1
),
89
(
2015
).
72.
M. T.
Harris
,
D. L.
Butler
,
G. P.
Boivin
,
J. B.
Florer
,
E. J.
Schantz
, and
R. J.
Wenstrup
, “
Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs
,”
J. Orthop. Res.
22
(
5
),
998
1003
(
2004
).
73.
J. O.
Jeong
 et al, “
Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy
,”
Circ. Res.
108
,
1340
1347
(
2011
).
74.
H. A.
Awad
,
G. P.
Boivin
,
M. R.
Dressler
,
F. N.
Smith
,
R. G.
Young
, and
D. L.
Butler
, “
Repair of patellar tendon injuries using a cell-collagen composite
,”
J. Orthop. Res.
21
(
3
),
420
431
(
2003
).
75.
J.
Ge
 et al, “
The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke
,”
Stem Cell Rev. Rep.
10
(
2
),
295
303
(
2014
).
76.
L.
Liu
,
L.
Tseng
,
Q.
Ye
,
Y. L.
Wu
,
D. J.
Bain
, and
C.
Ho
, “
A new method for preparing mesenchymal stem cells and labeling with ferumoxytol for cell tracking by MRI
,”
Sci. Rep.
6
(
1
),
26271
(
2016
).
77.
E.
Schmelzer
,
D. T.
McKeel
, and
J. C.
Gerlach
, “
Characterization of human mesenchymal stem cells from different tissues and their membrane encasement for prospective transplantation therapies
,”
BioMed Res. Int.
2019
,
6376271
.
78.
A.
Bajek
,
N.
Gurtowska
,
J.
Olkowska
,
L.
Kazmierski
,
M.
Maj
, and
T.
Drewa
, “
Adipose-derived stem cells as a tool in cell-based therapies
,”
Arch. Immunol. Ther. Exp.
64
(
6
),
443
454
(
2016
).
79.
P. O.
Bagnaninchi
and
N.
Drummond
, “
Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing
,”
Proc. Natl. Acad. Sci. USA
108
,
6462
(
2011
).
80.
Rapid analysis of human adipose- derived stem cells and 3T3-L1 differentiation toward adipocytes using the Scepter™ 2.0 cell counter
,”
BioTechniques
53
(
2
),
109
111
(
2012
).
81.
S. M.
Ridge
,
F. J.
Sullivan
, and
S. A.
Glynn
, “
Mesenchymal stem cells: Key players in cancer progression
,”
Mol. Cancer
16
(
1
),
31
(
2017
).
82.
H. Y.
Lee
and
I. S.
Hong
, “
Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential
,”
Cancer Sci.
108
(
10
),
1939
1946
(
2017
).
83.
U.
Kozlowska
 et al, “
Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues
,”
World J. Stem Cells
11
(
6
),
347
374
(
2019
).
84.
M. F.
Pittenger
,
D. E.
Discher
,
B. M.
Péault
,
D. G.
Phinney
,
J. M.
Hare
, and
A. I.
Caplan
, “
Mesenchymal stem cell perspective: cell biology to clinical progress
,”
npj Regenerative Med.
4
(
1
),
22
(
2019
).
85.
J. H.
Sung
 et al, “
Isolation and characterization of mouse mesenchymal stem cells
,”
Transplant. Proc.
40
(
8
),
2649
2654
(
2008
).
86.
M.
Baddoo
 et al, “
Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection
,”
J. Cell. Biochem.
89
,
1235
(
2003
).
87.
Y.
Zhao
 et al, “
Electrical property characterization of neural stem cells in differentiation
,”
PLoS One
11
(
6
),
e0158044
(
2016
).
88.
Y.
Liu
 et al, “
Identification of neural stem and progenitor cell subpopulations using DC insulator-based dielectrophoresis
,”
The Analyst
144
(
13
),
4066
4072
(
2019
).
89.
T. W.
Lin
,
L.
Cardenas
, and
L. J.
Soslowsky
, “
Biomechanics of tendon injury and repair
,”
J. Biomechanics
37
(
6
),
865
877
(
2004
).
90.
R.
Schweitzer
 et al, “
Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments
,”
Development
128
(
19
),
3855
3866
(
2001
). http://www.ncbi.nlm.nih.gov/pubmed/11585810.
91.
Y.
Ito
 et al, “
The Mohawk homeobox gene is a critical regulator of tendon differentiation
,”
Proc. Natl. Acad. Sci. USA
107
(
23
),
10538
10542
(
2010
).
92.
K.
Otabe
 et al, “
Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo
,”
J. Orthop. Res.
33
(
1
),
1
8
(
2015
).
93.
Z.
Yin
 et al, “
Single-cell analysis reveals a nestin+ tendon stem/progenitor cell population with strong tenogenic potentiality
,”
Sci. Adv.
2
(
11
),
e1600874
(
2016
).
94.
S. K.
Theodossiou
,
J. B.
Murray
, and
N. R.
Schiele
, “
Cell-cell junctions in developing and adult tendons
,”
Tissue Barriers
8
(
1
),
1695491
(
2020
).
95.
S. H.
Richardson
,
T.
Starborg
,
Y.
Lu
,
S. M.
Humphries
,
R. S.
Meadows
, and
K. E.
Kadler
, “
Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions
,”
Mol. Cell. Biol.
27
(
17
),
6218
6228
(
2007
).
96.
R. L.
Stanley
,
R. A.
Fleck
,
D. L.
Becker
,
A. E.
Goodship
,
J. R.
Ralphs
, and
J. C.
Patterson-Kane
, “
Gap junction protein expression and cellularity: Comparison of immature and adult equine digital tendons
,”
J. Anat.
211
,
325
334
(
2007
).
97.
S. K.
Theodossiou
,
J.
Tokle
, and
N. R.
Schiele
, “
TGFβ2-induced tenogenesis impacts cadherin and connexin cell-cell junction proteins in mesenchymal stem cells
,”
Biochem. Biophys. Rev. Commun.
508
(
3
),
889
893
(
2019
).
98.
L. W.
Dunne
,
T.
Iyyanki
,
J.
Hubenak
, and
A. B.
Mathur
, “
Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications
,”
Acta Biomater.
10
(
8
),
3630
3640
(
2014
).
99.
L. M.
Galatz
,
L.
Gerstenfeld
,
E.
Heber-Katz
, and
S. A.
Rodeo
, “
Tendon regeneration and scar formation: The concept of scarless healing
,”
J. Orthop. Res.
33
(
6
),
823
831
(
2015
).
100.
K.
Howell
 et al, “
Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing
,”
Sci. Rep.
7
,
srep45238
(
2017
).
101.
S.
Thomopoulos
,
W. C.
Parks
,
D. B.
Rifkin
, and
K. A.
Derwin
, “
Mechanisms of tendon injury and repair
,”
J. Orthop. Res.
33
(
6
),
832
839
(
2015
).
102.
R.
Yoshida
 et al, “
Murine supraspinatus tendon injury model to identify the cellular origins of rotator cuff healing
,”
Connect. Tissue Res.
57
(
6
),
507
515
(
2016
).
103.
H. L.
Moser
 et al, “
Genetic lineage tracing of targeted cell populations during enthesis healing
,”
J. Orthop. Res.
36
,
3275
3284
(
2018
).
104.
C.
Ulbrich
 et al, “
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells
,”
Biomed. Res. Int.
2014
,
928507
.
105.
D.
Grimm
 et al, “
The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells
,”
Stem Cells Transl. Med.
9
,
882
894
(
2020
).
106.
E. A.
Blaber
 et al, “
Microgravity reduces the differentiation and regenerative potential of embryonic stem cells
,”
Stem Cells Dev.
24
(
22
),
2605
2611
(
2015
).
107.
D.
Grimm
 et al, “
Tissue engineering under microgravity conditions–use of stem cells and specialized cells
,”
Stem Cells Dev.
27
(
12
),
787
804
(
2018
).
108.
R. P.
Schwarz
,
T. J.
Goodwin
, and
D. A.
Wolf
, “
Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity
,”
J. Tissue Cult. Methods
14
(
2
),
51
57
(
1992
).
109.
S. L.
Wuest
,
S.
Richard
,
S.
Kopp
,
D.
Grimm
, and
M.
Egli
, “
Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture
,”
BioMed Res. Int.
2015
,
971474
.
You do not currently have access to this content.