The ability to affect a wide range of biophysical properties through the use of light has led to the development of dynamic cell instructive materials. Using photoresponsive materials such as azopolymers, smart systems that use external, minimally damaging, light irradiation can be used to trigger specific surface morpho-physical properties in the presence of living cells. The interaction of light with an azopolymer film induces a mass migration phenomenon, allowing a variety of topographic patterns to be embossed on the polymeric film. Photoisomerization induces conformational changes at the molecular and macroscopic scale, resulting in light-induced variations of substrate morphological, physical, and mechanical properties. In this review, we discuss the photoactuation of azopolymeric interfaces to provide guidelines for the engineering and design of azopolymer films. Laser micropatterning for the modulation of azopolymer surfaces is examined as a way to diversify the capabilities of these polymers in cellular systems. Mass migration effects induced by azopolymer switching provides a foundation for performing a broad range of cellular manipulation techniques. Applications of azopolymers are explored in the context of dynamic culture systems, gaining insight into the complex processes involved in dynamic cell-material interactions. The review highlights azopolymers as a candidate for various applications in cellular control, including cell alignment, migration, gene expression, and others. Recent advances have underlined the importance of these systems in applications regarding three-dimensional cell culture and stem cell morphology. Azopolymers can be used not only to manipulate cells but also to probe for mechanistic studies of cellular crosstalk in response to chemical and mechanical stimuli.

1.
M. A. C.
Stuart
,
W. T. S.
Huck
,
J.
Genzer
,
M.
Müller
,
C.
Ober
,
M.
Stamm
,
G. B.
Sukhorukov
,
I.
Szleifer
,
V. V.
Tsukruk
,
M.
Urban
,
F.
Winnik
,
S.
Zauscher
,
I.
Luzinov
, and
S.
Minko
, “
Emerging applications of stimuli-responsive polymer materials
,”
Nat. Mater.
9
,
101
(
2010
).
2.
T.
Sun
,
G.
Qing
,
B.
Su
, and
L.
Jiang
, “
Functional biointerface materials inspired from nature
,”
Chem. Soc. Rev.
40
,
2909
(
2011
).
3.
T.
Sun
and
G.
Qing
, “
Biomimetic smart interface materials for biological applications
,”
Adv. Mater.
23
,
H57
(
2011
).
4.
D.
Hutmacher
and
W.
Chrzanowski
,
Biointerfaces: Where Material Meets Biology
(
Royal Society of Chemistry
,
2014
).
5.
Y.
Arima
,
K.
Kato
,
Y.
Teramura
, and
H.
Iwata
,
Design of Biointerfaces for Regenerative Medicine, in Polymers in Nanomedicine
, edited by
S.
Kunugi
and
T.
Yamaoka
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
167
200
.
6.
P.
Vincenzini
and
D.
De Rossi
,
Biomedical Applications of Smart Materials
(
Trans Tech Publications Ltd
,
2008
).
7.
M.
Ventre
,
F.
Causa
, and
P. A.
Netti
, “
Determinants of cell-material crosstalk at the interface: Towards engineering of cell instructive materials
,”
J. Roy. Soc. Interface
74
,
2017
(
2012
).
8.
C. A.
Custódio
,
R. L.
Reis
, and
J. F.
Mano
, “
Engineering biomolecular microenvironments for cell instructive biomaterials
,”
Adv. Healthc. Mater.
3
,
797
(
2014
).
9.
A.
Curtis
and
C.
Wilkinson
, “
Topographical control of cells
,”
Biomaterials
18
,
1573
(
1997
).
10.
F. F. B.
Hulshof
,
Y.
Zhao
,
A.
Vasilevich
,
N. R. M.
Beijer
,
M.
de Boer
,
B. J.
Papenburg
,
C.
van Blitterswijk
,
D.
Stamatialis
, and
J.
de Boer
, “
NanoTopoChip: High-throughput nanotopographical cell instruction
,”
Acta Biomater.
62
,
188
(
2017
).
11.
E.
Kingham
,
K.
White
,
N.
Gadegaard
,
M. J.
Dalby
, and
R. O. C.
Oreffo
, “
Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells
,”
Small
9
,
2140
(
2013
).
12.
L. E.
McNamara
,
R. J.
McMurray
,
M. J. P.
Biggs
,
F.
Kantawong
,
R. O. C.
Oreffo
, and
M. J.
Dalby
, “
Nanotopographical control of stem cell differentiation
,”
J. Tissue Eng.
1
,
120623
(
2010
).
13.
K. A.
Jansen
,
D. M.
Donato
,
H. E.
Balcioglu
,
T.
Schmidt
,
E. H. J.
Danen
, and
G. H.
Koenderink
, “
A guide to mechanobiology: Where biology and physics meet
,”
Biochim. Biophys. Acta
1853
,
3043
(
2015
).
14.
A. W.
Orr
,
B. P.
Helmke
,
B. R.
Blackman
, and
M. A.
Schwartz
, “
Mechanisms of mechanotransduction
,”
Dev. Cell
10
,
11
(
2006
).
15.
M. R. K.
Mofrad
and
R. D.
Kamm
,
Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues
(
Cambridge University Press
,
2009
).
16.
C.
Frantz
,
K. M.
Stewart
, and
V. M.
Weaver
, “
The extracellular matrix at a glance
,”
J. Cell Sci.
123
,
4195
(
2010
).
17.
P.
Lu
,
V. M.
Weaver
, and
Z.
Werb
, “
The extracellular matrix: A dynamic niche in cancer progression
,”
J. Cell Biol.
196
,
395
(
2012
).
18.
C.
Bonnans
,
J.
Chou
, and
Z.
Werb
, “
Remodelling the extracellular matrix in development and disease
,”
Nat. Rev. Mol. Cell Biol.
15
,
786
(
2014
).
19.
J. K.
Kular
,
S.
Basu
, and
R. I.
Sharma
, “
The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering
,”
J. Tissue Eng.
5
,
204173141455711
(
2014
).
20.
W. P.
Daley
,
S. B.
Peters
, and
M.
Larsen
, “
Extracellular matrix dynamics in development and regenerative medicine
,”
J. Cell Sci.
121
,
255
(
2008
).
21.
J.
Kim
and
R. C.
Hayward
, “
Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture
,”
Trends Biotechnol.
30
,
426
(
2012
).
22.
G.
Koçer
and
P.
Jonkheijm
, “
About chemical strategies to fabricate cell-instructive biointerfaces with static and dynamic complexity
,”
Adv. Healthc. Mater.
7
,
1701192
(
2018
).
23.
K. A.
Davis
,
K. A.
Burke
,
P. T.
Mather
, and
J. H.
Henderson
, “
Dynamic cell behavior on shape memory polymer substrates
,”
Biomaterials
32
,
2285
(
2011
).
24.
C. M.
Kirschner
and
K. S.
Anseth
,
In Situ Control of Cell Substrate Microtopographies Using Photolabile Hydrogels
(
Small
,
2012
).
25.
M.
Guvendiren
and
J. A.
Burdick
, “
Stem cell response to spatially and temporally displayed and reversible surface topography
,”
Adv. Healthc. Mater.
2
,
155
(
2013
).
26.
M. T.
Lam
,
W. C.
Clem
, and
S.
Takayama
, “
Reversible on-demand cell alignment using reconfigurable microtopography
,”
Biomaterials
29
,
1705
(
2008
).
27.
D.
Roy
,
J. N.
Cambre
, and
B. S.
Sumerlin
, “
Future perspectives and recent advances in stimuli-responsive materials
,”
Prog. Polym. Sci.
35
,
278
(
2010
).
28.
C.
Fedele
,
P. A.
Netti
, and
S.
Cavalli
, “
Azobenzene-based polymers: Emerging applications as cell culture platforms
,”
Biomaterials Sci.
6
,
990
(
2018
).
29.
Z.
Mahimwalla
,
K. G.
Yager
,
J.-I.
Mamiya
,
A.
Shishido
,
A.
Priimagi
, and
C. J.
Barrett
, “
Azobenzene photomechanics: Prospects and potential applications
,”
Polym. Bull.
69
,
967
(
2012
).
30.
A.
Goulet-Hanssens
and
C. J.
Barrett
, “
Photo-control of biological systems with azobenzene polymers
,”
J. Polym. Sci. Part A: Polym. Chem.
51
,
3058
(
2013
).
31.
G. S.
Kumar
and
D. C.
Neckers
, “
Photochemistry of azobenzene-containing polymers
,”
Chem. Rev.
89
,
1915
(
1989
).
32.
H.
Rau
,
E.
Lüddecke
,
H.
Nitsch
, and
H.
Patzelt
, “
The mechanism of photoisomerization of azobenzenes
,”
Bull. des Sociétés Chimiques Belges
5
,
475
(
1982
).
33.
H.
Rau
, “
Photoisomerization of azobenzenes
,” in
Photoreactive Organic Thin Films
(
Elsevier Science
,
2002
), pp.
3
47
.
34.
R. H. E.
Halabieh
,
R. H.
El Halabieh
,
O.
Mermut
, and
C. J.
Barrett
, “
Using light to control physical properties of polymers and surfaces with azobenzene chromophores
,”
Pure Appl. Chem.
76
,
1445
(
2004
).
35.
T.
Ikeda
,
J.
Mamiya
, and
Y.
Yu
, “
Photomechanics of liquid‐crystalline elastomers and other polymers
,”
Angew. Chem. Int. Ed.
46
,
506
(
2007
).
36.
I.
Roppolo
,
A.
Chiappone
,
A.
Angelini
,
S.
Stassi
,
F.
Frascella
,
C. F.
Pirri
,
C.
Ricciardi
, and
E.
Descrovi
, “
3D printable light-responsive polymers
,”
Mater. Horiz.
3
,
396
(
2017
).
37.
M. P.
Lutolf
and
J. A.
Hubbell
, “
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
,”
Nat. Biotechnol.
23
,
47
(
2005
).
38.
A.
Dillow
and
A.
Lowman
,
Biomimetic Materials and Design: Biointerfacial Strategies, Tissue Engineering and Targeted Drug Delivery
(
CRC Press
,
2002
).
39.
N. E.
Vrana
,
Cell and Material Interface
(
CRC Press
,
2020
).
40.
C. J.
Bettinger
,
R.
Langer
, and
J. T.
Borenstein
,
Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function
(
Angewandte Chemie International Edition
,
2009
).
41.
M.
Ventre
and
P. A.
Netti
, “
Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning
,”
ACS Appl. Mater. Interfaces
8
,
14896
(
2016
).
42.
M. A.
Wozniak
and
C. S.
Chen
, “
Mechanotransduction in development: A growing role for contractility
,”
Nat. Rev. Mol. Cell Biol.
10
,
34
(
2009
).
43.
C.
Bökel
and
N. H.
Brown
, “
Integrins in development: Moving on, responding to, and sticking to the extracellular matrix
,”
Dev. Cell
3
,
311
(
2002
).
44.
A. A.
Khalili
and
M. R.
Ahmad
, “
A review of cell adhesion studies for biomedical and biological applications
,”
Int. J. Mol. Sci.
16
,
18149
(
2015
).
45.
P.
Isermann
and
J.
Lammerding
, “
Nuclear mechanics and mechanotransduction in health and disease
,”
Curr. Biol.
23
,
R1113
(
2013
).
46.
Y.
Li
,
J. S.
Chu
,
K.
Kurpinski
,
X.
Li
,
D. M.
Bautista
,
L.
Yang
,
K.-L. P.
Sung
, and
S.
Li
, “
Biophysical regulation of histone acetylation in mesenchymal stem cells
,”
Biophys. J.
100
,
1902
(
2011
).
47.
D.
Falconnet
,
G.
Csucs
,
H. M.
Grandin
, and
M.
Textor
, “
Surface engineering approaches to micropattern surfaces for cell-based assays
,”
Biomaterials
27
,
3044
(
2006
).
48.
R. G.
Flemming
,
C. J.
Murphy
,
G. A.
Abrams
,
S. L.
Goodman
, and
P. F.
Nealey
, “
Effects of synthetic micro- and nano-structured surfaces on cell behavior
,”
Biomaterials
20
,
573
(
1999
).
49.
A.
Lagunas
,
D.
Caballero
, and
J.
Samitier
, “
Influence of controlled micro- and nanoengineered environments on stem cell fate
,” in
Advanced Surfaces for Stem Cell Research
(
Wiley
,
2016
), pp.
85
140
.
50.
A. M.
Rosales
,
S. L.
Vega
,
F. W.
DelRio
,
J. A.
Burdick
, and
K. S.
Anseth
, “
Hydrogels with reversible mechanics to probe dynamic cell microenvironments
,”
Angew. Chem. Int. Ed. Engl.
56
(
40
),
12132
(
2017
).
51.
C.
Cimmino
,
L.
Rossano
,
P. A.
Netti
, and
M.
Ventre
, “
Spatio-temporal control of cell adhesion: Toward programmable platforms to manipulate cell functions and fate
,”
Front Bioeng Biotechnol
6
,
190
(
2018
).
52.
F.
Huang
,
X.
Zhang
, and
B. Z.
Tang
, “
Stimuli-responsive materials: A web themed collection
,”
Mater. Chem. Front.
3
,
10
(
2019
).
53.
M.
Ebara
,
M.
Akimoto
,
K.
Uto
,
K.
Shiba
,
G.
Yoshikawa
, and
T.
Aoyagi
, “
Focus on the interlude between topographic transition and cell response on shape-memory surfaces
,”
Polymer
55
,
5961
(
2014
).
54.
P. T.
Mather
,
X.
Luo
, and
I. A.
Rousseau
, “
Shape memory polymer research
,”
Annu. Rev. Mater. Res.
39
,
445
(
2009
).
55.
D. M.
Le
,
K.
Kulangara
,
A. F.
Adler
,
K. W.
Leong
, and
V. S.
Ashby
, “
Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ϵ-caprolactone) surfaces
,”
Adv. Mater.
23
,
3278
(
2011
).
56.
M.
Irie
, “
Photoresponsive Polymers
,” in
New Polymer Materials. Advances in Polymer Science.
Vol 94 (
Springer
,
1990
).
57.
X.
Xiong
,
A.
del Campo
, and
J.
Cui
, “
Photoresponsive polymers
,” in
Smart Polymers Their Applications
2nd. ed. (
Elsevier
,
2019
), pp.
87
153
.
58.
O.
Bertrand
and
J.-F.
Gohy
, “
Photo-responsive polymers: Synthesis and applications
,”
Polym. Chem.
8
,
52
(
2017
).
59.
G.
Wang
and
J.
Zhang
, “
Photoresponsive molecular switches for biotechnology
,”
J. Photochem. Photobiol. C: Photochem. Rev.
13
,
299
(
2012
).
60.
C.
Cojocariu
and
P.
Rochon
, “
Light-induced motions in azobenzene-containing polymers
,”
J. Macromol. Sci. Part A Pure Appl. Chem.
7-8
,
1479
(
2004
).
61.
T.
Kobayashi
and
T.
Saito
,
Mechanism of Photo-Isomerization in Azobenzene
, in
Proceedings in Nonlinear Optics: Materials, Fundamentals and Applications
.
Wailea, Maui, Hawaii
(
29 July–2 August
2002
).
62.
G. S.
Hartley
, “
The cis-form of azobenzene
,”
Nature
140
,
281
(
1937
).
63.
A.
Natansohn
and
P.
Rochon
, “
Photoinduced motions in azo-containing polymers
,”
Chem. Rev.
102
,
4139
(
2002
).
64.
H.
Rau
and
E.
Lueddecke
, “
On the rotation-inversion controversy on photoisomerization of azobenzenes: Experimental proof of inversion
,”
J. Am. Chem. Soc.
104
,
1616
(
1982
).
65.
W.
Jones
,
Photochromism: Molecules and Systems.
Edited by
H.
Dürr
and
H.
Bouas-Laurent
(
Elsevier
,
Amsterdam
,
1990
).
66.
R.
Turanský
,
M.
Konôpka
,
N. L.
Doltsinis
,
I.
Štich
, and
D.
Marx
, “
Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges
,”
Chem. Phys. Chem.
11
,
345
(
2010
).
67.
J.
Henzl
,
M.
Mehlhorn
,
H.
Gawronski
,
K.-H.
Rieder
, and
K.
Morgenstern
,
Reversible Cis-Trans Isomerization of a Single Azobenzene Molecule
(
Angewandte Chemie International Edition
,
2006
).
68.
X.
Tong
,
M.
Pelletier
,
A.
Lasia
, and
Y.
Zhao
,
Fast Cis–Trans Isomerization of an Azobenzene Derivative in Liquids and Liquid Crystals under a Low Electric Field
(
Angewandte Chemie International Edition
,
2008
).
69.
C. J.
Brown
, “
A refinement of the crystal structure of azobenzene
,”
Acta Crystallographica.
21
,
146
(
1966
).
70.
G. C.
Hampson
and
J.
Monteath Robertson
, “
Bond lengths and resonance in the cis-azobenzene molecule
,”
J. Chem. Soc. (Resumed)
78
,
409
(
1941
).
71.
V.
Toshchevikov
,
M.
Saphiannikova
, and
G.
Heinrich
, “
Theory of light-induced deformations in azobenzene polymers: Structure-property relationship
,”
Opt. Mater. Defence Syst. Technol. VI.
7487
,
74870B
(
2009
)
72.
H. M. D.
Bandara
and
S. C.
Burdette
, “
Photoisomerization in different classes of azobenzene
,”
Chem. Soc. Rev.
5
,
1809
(
2012
)
73.
E.
Merino
and
M.
Ribagorda
, “
Control over molecular motion using the cis–trans photoisomerization of the azo group
,”
Beilstein J. Organic Chem.
8
,
1071
(
2012
).
74.
A. A.
Beharry
and
G. A.
Woolley
, “
Azobenzene photoswitches for biomolecules
,”
Chem. Soc. Rev.
40
,
4422
(
2011
).
75.
V.
Marturano
,
V.
Ambrogi
,
N. A. G.
Bandeira
,
B.
Tylkowski
,
M.
Giamberini
, and
P.
Cerruti
, “
Modeling of azobenzene-based compounds
,”
Phys. Sci. Rev.
2
,
11
(
2017
).
76.
C. R.
Crecca
and
A. E.
Roitberg
, “
Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives
,”
J. Phys. Chem. A.
110
,
8188
(
2006
).
77.
P. P.
Birnbaum
and
D. W. G.
Style
, “
The photo-isomerization of some azobenzene derivatives
,”
Trans. Faraday Soc.
50
,
1192
(
1954
).
78.
H. A.
Wegner
,
Azobenzenes in a New Light-Switching in Vivo
,
Angewandte Chemie International Edition
,
2012
).
79.
D.
Bléger
,
J.
Schwarz
,
A. M.
Brouwer
, and
S.
Hecht
, “
O-fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light
,”
J. Am. Chem. Soc.
134
,
20597
(
2012
).
80.
R.
Siewertsen
,
H.
Neumann
,
B.
Buchheim-Stehn
,
R.
Herges
,
C.
Näther
,
F.
Renth
, and
F.
Temps
, “
Highly efficient reversiblez−ephotoisomerization of a bridged azobenzene with visible light through resolved s1(nπ*) absorption bands
,”
J. Am. Chem. Soc
131
,
15594
(
2009
).
81.
C.
Knie
,
M.
Utecht
,
F.
Zhao
,
H.
Kulla
,
S.
Kovalenko
,
A. M.
Brouwer
,
P.
Saalfrank
,
S.
Hecht
, and
D.
Bléger
, “
Ortho-fluoroazobenzenes: Visible light switches with very long-lived zisomers
,”
Chem.–Eur. J.
20
,
16492
(
2014
).
82.
S.
Samanta
,
T. M.
McCormick
,
S. K.
Schmidt
,
D. S.
Seferos
, and
G. A.
Woolley
, “
Robust visible light photoswitching with ortho-thiol substituted azobenzenes
,”
Chem. Commun.
49
,
10314
(
2013
).
83.
A. A.
Beharry
,
O.
Sadovski
, and
G. A.
Woolley
, “
Azobenzene photoswitching without ultraviolet light
,”
J. Am. Chem. Soc.
133
,
19684
(
2011
).
84.
A.
Yavrian
, “
Circularly polarized light-induced rearrangement of optical axis in photoanisotropic recording media
,”
Opt. Eng.
41
,
852
(
2002
).
85.
C.
Cojocariu
and
P.
Rochon
, “
Light-induced motions in azobenzene-containing polymers
,”
J. Macromol. Sci. Part A Pure Appl. Chem.
76
,
1479
(
2004
).
86.
P.
Weis
,
W.
Tian
, and
S.
Wu
, “
Frontispiece: Photoinduced liquefaction of azobenzene-containing polymers
,”
Chem.–Eur. J.
24
,
6494
(
2018
).
87.
P.
Weis
,
W.
Tian
, and
S.
Wu
, “
Photoinduced liquefaction of azobenzene-containing polymers
,”
Chem.–Eur. J.
24
,
6494
(
2018
).
88.
K.
Sumaru
,
T.
Yamanaka
,
T.
Fukuda
, and
H.
Matsuda
, “
Photoinduced surface relief gratings on azopolymer films: Analysis by a fluid mechanics model
,”
Appl. Phys. Lett.
75
,
1878
(
1999
).
89.
Y.
Zhao
and
T.
Ikeda
,
Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals
(
John Wiley & Sons
,
2009
).
90.
P.
Lefin
,
C.
Fiorini
, and
J.-M.
Nunzi
, “
Anisotropy of the photoinduced translation diffusion of azo-dyes
,”
Opt. Mater.
9
,
323
(
1998
).
91.
O. R.
Bennani
,
T. A.
Al-Hujran
,
J.-M.
Nunzi
,
R. G.
Sabat
, and
O.
Lebel
, “
Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives
,”
New J. Chem.
39
,
9162
(
2015
).
92.
P.
Lefin
,
C.
Fiorini
, and
J.-M.
Nunzi
, “
Anistrophy of the photo-induced translation diffusion of azobenzene dyes
,” in
Photosensitive Optical Materials and Devices
, Vol.
2998
(
International Society for Optics and Photonics
,
1997
), pp.
304
311
.
93.
P.
Karageorgiev
,
D.
Neher
,
B.
Schulz
,
B.
Stiller
,
U.
Pietsch
,
M.
Giersig
, and
L.
Brehmer
, “
From anisotropic photo-fluidity towards nanomanipulation in the optical near-field
,”
Nat. Mater.
4
,
699
(
2005
).
94.
N. S.
Yadavalli
,
S.
Loebner
,
T.
Papke
,
E.
Sava
,
N.
Hurduc
, and
S.
Santer
, “
A comparative study of photoinduced deformation in azobenzene containing polymer films
,”
Soft Matter
12
,
2593
(
2016
).
95.
M.
Saphiannikova
,
V.
Toshchevikov
, and
J.
Ilnytskyi
, “
Photoinduced deformations in azobenzene polymer films, nonlinear opt
,”
Quantum Opt.
41
,
27
(
2010
), see https://scholar.google.it/scholar?hl=en&as_sdt=0%2C5&q=Photoinduced+deformations+in+azobenzene+polymer+films+&btnG=.
96.
P. L.
Rochon
,
J.
Mao
,
A.
Natansohn
, and
S.
Xie
, “
Efficiency of reversible optical storage in azo polymers
,”
Proc. Int. Soc. Opt. Eng.
2042
,
347
(
1993
).
97.
P.
Rochon
,
E.
Batalla
, and
A.
Natansohn
, “
Optically induced surface gratings on azoaromatic polymer films
,”
Appl. Phys. Lett.
66
,
136
(
1995
).
98.
D. Y.
Kim
,
S. K.
Tripathy
,
L.
Li
, and
J.
Kumar
, “
Laser‐induced holographic surface relief gratings on nonlinear optical polymer films
,”
Appl. Phys. Lett.
66
,
1166
(
1995
).
99.
R. J.
Jeng
,
Y. M.
Chen
,
J.
Kumar
, and
S. K.
Tripathy
, “
Novel crosslinked guest-host system with stable second-order nonlinearity
,”
J. Macromolecular Sci., Part A.
29
,
1115
(
1992
).
100.
H.
Baac
,
J.-H.
Lee
,
J.-M.
Seo
,
T. H.
Park
,
H.
Chung
,
S.-D.
Lee
, and
S. J.
Kim
, “
Submicron-scale topographical control of cell growth using holographic surface relief grating
,”
Mater. Sci. Eng.: C
24
,
209
(
2004
).
101.
N.
Hurduc
,
A.
Macovei
,
C.
Paius
,
A.
Raicu
,
I.
Moleavin
,
N.
Branza-Nichita
,
M.
Hamel
, and
L.
Rocha
, “
Azo-polysiloxanes as new supports for cell cultures
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
33
,
2440
(
2013
).
102.
A. R.
Luca
,
I.-A.
Moleavin
,
N.
Hurduc
,
M.
Hamel
, and
L.
Rocha
, “
Mass transport in low Tg azo-polymers: Effect on the surface relief grating induction and stability of additional side chain groups able to generate physical interactions
,”
Appl. Surf. Sci.
290
,
172
(
2014
).
103.
L.
Rocha
,
C.-M.
Păiuş
,
A.
Luca-Raicu
,
E.
Resmerita
,
A.
Rusu
,
I.-A.
Moleavin
,
M.
Hamel
,
N.
Branza-Nichita
, and
N.
Hurduc
, “
Azobenzene based polymers as photoactive supports and micellar structures for applications in biology
,”
J. Photochem. Photobiol. A Chem.
291
,
16
(
2014
).
104.
C.
Rianna
,
A.
Calabuig
,
M.
Ventre
,
S.
Cavalli
,
V.
Pagliarulo
,
S.
Grilli
,
P.
Ferraro
, and
P. A.
Netti
, “
Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation
,”
ACS Appl. Mater. Interfaces
7
,
16984
(
2015
).
105.
S.
Bian
,
J. M.
Williams
,
D. Y.
Kim
,
L.
Li
,
S.
Balasubramanian
,
J.
Kumar
, and
S.
Tripathy
, “
Photoinduced surface deformations on azobenzene polymer films
,”
J. Appl. Phys.
86
,
4498
(
1999
).
106.
S. L.
Oscurato
,
M.
Salvatore
, and
P.
Maddalena
, “
From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials
,”
Nanophotonics
7
,
1387
(
2018
).
107.
S.
Bian
,
L.
Li
,
J.
Kumar
,
D. Y.
Kim
,
J.
Williams
, and
S. K.
Tripathy
, “
Single laser beam-induced surface deformation on azobenzene polymer films
,”
Appl. Phys. Lett.
73
,
1817
(
1998
).
108.
T.
Grosjean
and
D.
Courjon
, “
Photopolymers as vectorial sensors of the electric field
,”
Opt. Express.
14
,
2203
(
2006
).
109.
J.
Noga
,
A.
Sobolewska
,
S.
Bartkiewicz
,
M.
Virkki
, and
A.
Priimagi
, “
Periodic surface structures induced by a single laser beam irradiation
,”
Macromolecular Mater. Eng.
302
(
2
),
1600329
(
2017
).
110.
C.
Rianna
,
L.
Rossano
,
R. H.
Kollarigowda
,
F.
Formiggini
,
S.
Cavalli
,
M.
Ventre
, and
P. A.
Netti
, “
Dynamic cell substrates: Spatio-temporal control of dynamic topographic patterns on azopolymers for cell culture applications
,”
Adv. Funct. Mater.
26
(
42
),
7572
7580
(
2016
).
111.
A.
Ambrosio
,
A.
Camposeo
,
A.
Carella
,
F.
Borbone
,
D.
Pisignano
,
A.
Roviello
, and
P.
Maddalena
, “
Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores
,”
J. Appl. Phys.
107
,
083110
(
2010
).
112.
C.
Fedele
,
M.
De Gregorio
,
P. A.
Netti
,
S.
Cavalli
, and
C.
Attanasio
, “
Azopolymer photopatterning for directional control of angiogenesis
,”
Acta Biomater.
63
,
317
(
2017
).
113.
L.
Rossano
,
C.
Cimmino
,
S.
Cavalli
,
M.
Ventre
, and
P. A.
Netti
, “
Regulating fibroblast shape and mechanics through photoresponsive surfaces with concentric circular topographic patterns
,”
Adv. Mater. Interfaces
5
(
21
),
1800890
(
2018
).
114.
D.-H.
Kim
,
P. P.
Provenzano
,
C. L.
Smith
, and
A.
Levchenko
, “
Matrix nanotopography as a regulator of cell function
,”
J. Cell Biol.
197
,
351
(
2012
).
115.
N.
Tsutsumi
and
A.
Fujihara
, “
Pulsed laser induced spontaneous gratings on a surface of azobenzene polymer
,”
Appl. Phys. Lett.
85
,
4582
(
2004
).
116.
C.
Hubert
,
C.
Fiorini-Debuisschert
,
I.
Hassiaoui
,
L.
Rocha
,
P.
Raimond
, and
J.-M.
Nunzi
, “
Emission properties of an organic light-emitting diode patterned by a photoinduced autostructuration process
,”
Appl. Phys. Lett.
87
,
191105
(
2005
).
117.
R.
Barille
,
J.-M.
Nunzi
,
S.
Ahmadi-Kandjani
,
E.
Ortyl
, and
S.
Kucharski
,
One step inscription of surface relief microgratings
,
Opt. Comm.
280
,
217
(
2007
).
118.
C.
Hubert
,
C.
Fiorini-Debuisschert
,
L.
Rocha
,
P.
Raimond
, and
J.-M.
Nunzi
, “
Spontaneous photoinduced patterning of azo-dye polymer films: The facts
,”
J. Opt. Soc. America B.
24
,
1839
(
2007
).
119.
S.
Lee
,
Y.-C.
Jeong
, and
J.-K.
Park
, “
Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer
,”
Appl. Phys. Lett.
93
,
031912
(
2008
).
120.
H.
Leblond
,
R.
Barille
,
S.
Ahmadi-Kandjani
,
J.-M.
Nunzi
,
E.
Ortyl
, and
S.
Kucharski
, “
Spontaneous formation of optically induced surface relief gratings
,”
J. Phys. B: At. Mol. Opt. Phys.
20
,
205401
(
2009
).
121.
J.
Yin
,
G.
Ye
, and
X.
Wang
, “
Self-structured surface patterns on molecular azo glass films induced by laser light irradiation
,”
Langmuir
26
,
6755
(
2009
).
122.
A.
Ambrosio
,
P.
Maddalena
,
A.
Carella
,
F.
Borbone
,
A.
Roviello
,
M.
Polo
,
A. A. R.
Neves
,
A.
Camposeo
, and
D.
Pisignano
, “
Two-photon induced self-structuring of polymeric films based on y-shape azobenzene chromophore
,”
J. Phys. Chem. C.
115
,
13566
(
2011
).
123.
X.
Wang
,
J.
Yin
, and
X.
Wang
, “
Self-structured surface patterns on epoxy-based azo polymer films induced by laser light irradiation
,”
Macromolecules
44
,
6856
(
2011
).
124.
X.
Wang
,
J.
Yin
, and
X.
Wang
, “
Photoinduced self-structured surface pattern on a molecular azo glass film: structure–property relationship and wavelength correlation
,”
Langmuir
27
,
12666
(
2011
).
125.
A.
Ambrosio
,
S.
Girardo
,
A.
Camposeo
,
D.
Pisignano
, and
P.
Maddalena
, “
Controlling spontaneous surface structuring of azobenzene-containing polymers for large-scale nano-lithography of functional substrates
,”
Appl. Phys. Lett.
102
,
093102
(
2013
).
126.
L.
Mazaheri
,
S.
Ahmadi-Kandjani
, and
M.
Nunzi
, “
Influence of temperature on the relaxation kinetics of spontaneous pattern formation in an azo–polymer film
,”
Opt. Comm.
298–299
,
150
(
2013
).
127.
H.
Galinski
,
A.
Ambrosio
,
P.
Maddalena
,
I.
Schenker
,
R.
Spolenak
, and
F.
Capasso
, “
Instability-induced pattern formation of photoactivated functional polymers
,”
Proc. Nat. Acad. Sci.
111
,
17017
(
2014
).
128.
A.
Sobolewska
and
S.
Bartkiewicz
, “
Single beam test (SBT) as a criterion for the resolution of holographic recording
,”
J. Mater. Chem. C.
22
,
5616
(
2015
).
129.
V.
Teboul
,
R.
Barillé
,
P.
Tajalli
,
S.
Ahmadi-Kandjani
,
H.
Tajalli
,
S.
Zielinska
, and
E.
Ortyl
, “
Light mediated emergence of surface patterns in azopolymers at low temperatures
,”
Soft Matter.
32
,
6444
(
2015
).
130.
L.
Mazaheri
,
S. R.
Bobbara
,
O.
Lebel
, and
J.-M.
Nunzi
, “
Photoinduction of spontaneous surface relief gratings on azo DR1 glass
,”
Opt. Lett.
41
,
2958
(
2016
).
131.
C.
Hubert
,
C.
Fiorini-Debuisschert
,
P.
Raimond
, and
J.-M.
Nunzi
, “
Photoinduced spontaneous patterning of azopolymer films using light-controlled mass transport
,”
Organic Photonic Mater. Dev. V.
4991
,
313
(
2003
).
132.
R.
Barillé
,
R.
Janik
,
S.
Kucharski
,
J.
Eyer
, and
F.
Letournel
, “
Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance
,”
Colloids Surf. B Biointerfaces
88
,
63
(
2011
).
133.
Y.
Gritsai
,
L. M.
Goldenberg
, and
J.
Stumpe
, “
Efficient single-beam light manipulation of 3D microstructures in azobenzene-containing materials
,”
Opt. Express
19
,
18687
(
2011
).
134.
S. L.
Oscurato
,
F.
Borbone
,
P.
Maddalena
, and
A.
Ambrosio
, “
Light-driven wettability tailoring of azopolymer surfaces with reconfigured three-dimensional posts
,”
ACS Appl. Mater. Interfaces
9
,
30133
(
2017
).
135.
H. S.
Kang
,
S.
Lee
,
S.-A.
Lee
, and
J.-K.
Park
, “
Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications
,”
Adv. Mater.
25
,
5490
(
2013
).
136.
S.
Lee
,
J.
Shin
,
Y.-H.
Lee
,
S.
Fan
, and
J.-K.
Park
, “
Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes
,”
Nano Letters
10
,
296
(
2010
).
137.
S.
Lee
,
H. S.
Kang
, and
J.-K.
Park
, “
Nanoarchitectures: High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: Sub-30-Nm line, ellipsoid, rectangle, and circle arrays
,”
Adv. Funct. Mater.
21
,
1770
(
2011
).
138.
A. M.
Dubrovkin
,
R.
Barillé
,
E.
Ortyl
, and
S.
Zielinska
, “
Photoinduced doughnut-shaped nanostructures
,”
Chem. Phys. Lett.
599
,
7
(
2014
).
139.
A. M.
Dubrovkin
,
R.
Barillé
,
E.
Ortyl
, and
S.
Zielinska
, “
Near-field optical control of doughnut-shaped nanostructures
,”
Opt. Comm.
334
,
147
(
2015
).
140.
W.
Wang
,
C.
Du
,
X.
Wang
,
X.
He
,
J.
Lin
,
L.
Li
, and
S.
Lin
, “
Directional photomanipulation of breath figure arrays
,”
Angew. Chem. Int. Ed Engl.
53
,
12116
(
2014
).
141.
S. G.
Sorkhabi
,
R.
Barille
,
S.
Ahmadi-Kandjani
,
S.
Zielinska
, and
E.
Ortyl
, “
A new method for patterning azopolymer thin film surfaces
,”
Opt. Mater.
66
,
573
(
2017
).
142.
W.
Wang
,
Y.
Yao
,
T.
Luo
,
L.
Chen
,
J.
Lin
,
L.
Li
, and
S.
Lin
, “
Deterministic reshaping of breath figure arrays by directional photomanipulation
,”
ACS Appl. Mater. Interfaces
9
,
4223
(
2017
).
143.
B.
Liu
,
Y.
He
,
P.
Fan
, and
X.
Wang
, “
Azo polymer microspherical cap array: Soft-lithographic fabrication and photoinduced shape deformation behavior
,”
Langmuir
23
,
11266
(
2007
).
144.
X.
Kong
,
X.
Wang
,
T.
Luo
,
Y.
Yao
,
L.
Li
, and
S.
Lin
, “
Photomanipulated architecture and patterning of azopolymer array
,”
ACS Appl. Mater. Interfaces
9
,
19345
(
2017
).
145.
S.
Lee
,
H. S.
Kang
,
A.
Ambrosio
,
J.-K.
Park
, and
L.
Marrucci
, “
Directional superficial photofluidization for deterministic shaping of complex 3D architectures
,”
ACS Appl. Mater. Interfaces
7
,
8209
(
2015
).
146.
S.
De Martino
,
W.
Zhang
,
L.
Klausen
,
H.-Y.
Lou
,
X.
Li
,
F. S.
Alfonso
,
S.
Cavalli
,
P. A.
Netti
,
F.
Santoro
, and
B.
Cui
, “
Dynamic manipulation of cell membrane curvature by light-driven reshaping of azopolymer
,”
Nano Lett.
20
,
577
(
2020
).
147.
H. S.
Kang
,
S.
Lee
, and
J.-K.
Park
, “
Monolithic, hierarchical surface reliefs by holographic photofluidization of azopolymer arrays: direct visualization of polymeric flows
,”
Adv. Funct. Mater.
21
,
4412
(
2011
).
148.
S.
Lee
,
H. S.
Kang
, and
J.-K.
Park
, “
Directional photofluidization lithography: Micro/nanostructural evolution by photofluidic motions of azobenzene materials
,”
Adv. Mater.
24
,
2069
(
2012
).
149.
F.
Pirani
,
A.
Angelini
,
F.
Frascella
,
R.
Rizzo
,
S.
Ricciardi
, and
E.
Descrovi
, “
Light-driven reversible shaping of individual azopolymeric micro-pillars
,”
Sci. Rep.
6
,
31702
(
2016
).
150.
J.
Choi
,
W.
Jo
,
S. Y.
Lee
,
Y. S.
Jung
,
S.-H.
Kim
, and
H.-T.
Kim
, “
Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars
,”
ACS Nano
11
,
7821
(
2017
).
151.
R.
Hensel
,
R.
Helbig
,
S.
Aland
,
A.
Voigt
,
C.
Neinhuis
, and
C.
Werner
, “
Tunable nano-replication to explore the omniphobic characteristics of springtail skin
,”
NPG Asia Mater.
5
,
e37
(
2013
).
152.
A.
Tuteja
,
W.
Choi
,
J. M.
Mabry
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Robust omniphobic surfaces
,”
Proc. Nat. Aca. Sci.
105
,
18200
(
2008
).
153.
L.
Cao
,
H.-H.
Hu
, and
D.
Gao
, “
Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials
,”
Langmuir
23
,
4310
(
2007
).
154.
F.
Pirani
,
A.
Angelini
,
S.
Ricciardi
,
F.
Frascella
, and
E.
Descrovi
, “
Laser-induced anisotropic wettability on azopolymeric micro-structures
,”
Appl. Phys. Lett.
110
,
101603
(
2017
).
155.
A.
Puliafito
,
S.
Ricciardi
,
F.
Pirani
,
V.
Čermochová
,
L.
Boarino
,
N.
De Leo
,
L.
Primo
, and
E.
Descrovi
, “
Driving cells with light-controlled topographies
,”
Adv. Sci.
6
,
1801826
(
2019
).
156.
R. K.
Shaha
,
D. R.
Merkel
,
M. P.
Anderson
,
E. J.
Devereaux
,
R. R.
Patel
,
A. H.
Torbati
,
N.
Willett
,
C. M.
Yakacki
, and
C. P.
Frick
, “
Biocompatible liquid-crystal elastomers mimic the intervertebral disc
,”
J. Mech. Behav. Biomed. Mater.
107
,
103757
(
2020
).
157.
M. E.
Prévôt
,
S.
Ustunel
,
L. E.
Bergquist
,
R.
Cukelj
,
Y.
Gao
,
T.
Mori
,
L.
Pauline
,
R. J.
Clements
, and
E.
Hegmann
, “
Synthesis of biocompatible liquid crystal elastomer foams as cell scaffolds for 3D spatial cell cultures
,”
J. Vis. Exp.
122
,
55452
(
2017
).
158.
A.
Sharma
,
A.
Neshat
,
C. J.
Mahnen
,
A. D.
Nielsen
,
J.
Snyder
,
T. L.
Stankovich
,
B. G.
Daum
,
E. M.
LaSpina
,
G.
Beltrano
,
Y.
Gao
,
S.
Li
,
B.-W.
Park
,
R. J.
Clements
,
E. J.
Freeman
,
C.
Malcuit
,
J. A.
McDonough
,
L. T. J.
Korley
,
T.
Hegmann
, and
E.
Hegmann
, “
Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures
,”
Macromol. Biosci.
15
,
200
(
2015
).
159.
K. G.
Yager
and
C. J.
Barrett
, “
Light-induced nanostructure formation using azobenzene polymers
,”
Poly. Nanostruc. Applic.
0
,
1
(
2006
).
160.
T.
Ikeda
,
S.
Horiuchi
,
D. B.
Karanjit
,
S.
Kurihara
, and
S.
Tazuke
, “
Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 1. calorimetric studies and order parameters
,”
Macromolecules
23
,
36
(
1990
).
161.
G.
Koçer
,
J.
Ter Schiphorst
,
M.
Hendrikx
,
H. G.
Kassa
,
P.
Leclère
,
A. P. H. J.
Schenning
, and
P.
Jonkheijm
, “
Light-responsive hierarchically structured liquid crystal polymer networks for harnessing cell adhesion and migration
,”
Adv. Mater.
29
,
1606407
(
2017
).
162.
I.
Tomatsu
,
K.
Peng
, and
A.
Kros
, “
Photoresponsive hydrogels for biomedical applications
,”
Adv. Drug Deliv. Rev.
63
,
1257
(
2011
).
163.
K.
Peng
,
I.
Tomatsu
, and
A.
Kros
, “
Light controlled protein release from a supramolecular hydrogel
,”
Chem. Commun.
46
,
4094
(
2010
).
164.
F. A.
Pennacchio
,
C.
Fedele
,
S.
De Martino
,
S.
Cavalli
,
R.
Vecchione
, and
P. A.
Netti
, “
Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system
,”
ACS Appl. Mater. Interfaces
10
,
91
(
2018
).
165.
A. M.
Rosales
,
K. M.
Mabry
,
E. M.
Nehls
, and
K. S.
Anseth
, “
Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels
,”
Biomacromolecules
16
,
798
(
2015
).
166.
I.-N.
Lee
,
O.
Dobre
,
D.
Richards
,
C.
Ballestrem
,
J. M.
Curran
,
J. A.
Hunt
,
S. M.
Richardson
,
J.
Swift
, and
L. S.
Wong
, “
Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening
,”
ACS Appl. Mater. Interfaces
10
,
7765
(
2018
).
167.
M. F.
Pittenger
,
A. M.
Mackay
,
S. C.
Beck
,
R. K.
Jaiswal
,
R.
Douglas
,
J. D.
Mosca
,
M. A.
Moorman
,
D. W.
Simonetti
,
S.
Craig
, and
D. R.
Marshak
, “
Multilineage potential of adult human mesenchymal stem cells
,”
Science
284
,
143
(
1999
).
168.
D. T.
Scadden
, “
The stem-cell niche as an entity of action
,”
Nature
441
,
1075
(
2006
).
169.
G. V.
Shivashankar
, “
Mechanosignaling to the cell nucleus and gene regulation
,”
Annu. Rev. Biophys.
40
,
361
(
2011
).
170.
C.
Durand
and
P.
Charbord
,
Stem Cell Biology and Regenerative Medicine
(
River Publishers
,
2015
).
171.
K.
Roy
,
Biomaterials as Stem Cell Niche
(
Springer Science & Business Media
,
2010
).
172.
F.
Guilak
,
D. M.
Cohen
,
B. T.
Estes
,
J. M.
Gimble
,
W.
Liedtke
, and
C. S.
Chen
, “
Control of stem cell fate by physical interactions with the extracellular matrix
,”
Cell Stem Cell
5
,
17
(
2009
).
173.
P. S.
Mathieu
and
E. G.
Loboa
, “
Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways
,”
Tissue Eng. Part B Rev.
18
,
436
(
2012
).
174.
A.
Tijore
, “Modulating stem cell differentiation via cell-material interaction,” Ph.D. dissertation (
2016
).
175.
H.
Lv
,
L.
Li
,
M.
Sun
,
Y.
Zhang
,
L.
Chen
,
Y.
Rong
, and
Y.
Li
, “
Mechanism of regulation of stem cell differentiation by matrix stiffness
,”
Stem Cell Res. Ther.
6
,
103
(
2015
).
176.
J. R.
Tse
and
A. J.
Engler
, “
Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate
,”
PLoS One
6
,
e15978
(
2011
).
177.
A.
Lagunas
and
D.
Caballero
, “
Influence of controlled micro-and nanoengineered environments on stem cell fate
,” in
Advanced Surfaces for Stem Cell Research
(
Wiley
,
2016
), pp.
85
140
.
178.
M. J.
Dalby
,
N.
Gadegaard
,
R.
Tare
,
A.
Andar
,
M. O.
Riehle
,
P.
Herzyk
,
C. D. W.
Wilkinson
, and
R. O. C.
Oreffo
, “
The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
,”
Nat. Mater.
6
,
997
(
2007
).
179.
C.
Yang
,
F. W.
DelRio
,
H.
Ma
,
A. R.
Killaars
,
L. P.
Basta
,
K. A.
Kyburz
, and
K. S.
Anseth
, “
Spatially patterned matrix elasticity directs stem cell fate
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E4439
(
2016
).
180.
J.
Lee
,
A. A.
Abdeen
, and
K. A.
Kilian
, “
Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment
,”
Sci. Rep.
4
,
5188
(
2014
).
181.
M.
Salvatore
,
S. L.
Oscurato
,
M.
D'Albore
,
V.
Guarino
,
S.
Zeppetelli
,
P.
Maddalena
,
A.
Ambrosio
, and
L.
Ambrosio
, “
Quantitative study of morphological features of stem cells onto photopatterned azopolymer films
,”
J. Funct. Biomater.
11
,
8
(
2020
).
182.
S. D.
Martino
,
S.
Cavalli
, and
P. A.
Netti
, “
Photoactive interfaces for spatio‐temporal guidance of mesenchymal stem cell fate
,”
Adv. Healthc. Mater.
9
,
2000470
(
2020
).
183.
S. J.
Zilker
,
T.
Bieringer
,
D.
Haarer
,
R. S.
Stein
,
J. W.
van Egmond
, and
S. G.
Kostromine
, “
Holographic data storage in amorphous polymers
,”
Adv. Mater.
10
,
855
(
1998
).
184.
A.
Shishido
,
O.
Tsutsumi
, and
T.
Ikeda
, “
Liquid crystal photonics: Optical switching and image storage by means of azobenzene liquid-crystal films
,”
MRS Online Proc. Library Archive
425
,
213
(
1996
).
185.
Y.
Shi
,
W. H.
Steier
,
L.
Yu
,
M.
Chen
, and
L. R.
Dalton
, “
Large photoinduced birefringence in an optically nonlinear polyester polymer
,”
Appl. Phys. Lett
59
,
2935
(
1991
).
186.
C.-U.
Bang
,
A.
Shishido
, and
T.
Ikeda
, “
Azobenzene liquid-crystalline polymer for optical switching of grating waveguide couplers with a flat surface
,”
Macromolecular Rapid Comm.
28
,
1040
(
2007
).
187.
C.
Cocoyer
,
L.
Rocha
,
L.
Sicot
,
B.
Geffroy
,
R.
de Bettignies
,
C.
Sentein
,
C.
Fiorini-Debuisschert
, and
P.
Raimond
, “
Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances
,”
Appl. Phys. Lett.
88
,
133108
(
2006
).
You do not currently have access to this content.