Microinjection with ultra-fine glass capillaries is widely used to introduce cryoprotective agents and other foreign molecules into animal cells, oocytes, and embryos. The fragility of glass capillaries makes difficult the microinjection of fish eggs and embryos, which are usually protected by a hard outer shell, called the chorion. In this study, we introduce a new electromechanical approach, based on the electropiercing of fish eggs with a stationary needle electrode. The electropiercing setup consists of two asymmetric electrodes, including a μm-scaled nickel needle placed opposite to a mm-scaled planar counter-electrode. A fish egg is immersed in low-conductivity solution and positioned between the electrodes. Upon application of a short electric pulse of sufficient field strength, the chorion is electroporated and the egg is attracted to the needle electrode by positive dielectrophoresis. As a result, the hard chorion and the subjacent yolk membrane are impaled by the sharp electrode tip, thus providing direct access to the egg yolk plasma. Our experiments on early-stage medaka fish embryos showed the applicability of electro-microinjection to fish eggs measuring about 1 mm in diameter. We optimized the electropiercing of medaka eggs with respect to the field strength, pulse duration, and conductivity of bathing medium. We microscopically examined the injection of dye solution into egg yolk and the impact of electropiercing on embryos' viability and development. We also analyzed the mechanisms of electropiercing in comparison with the conventional mechanical microinjection. The new electropiercing method has a high potential for automation, e.g., via integration into microfluidic devices, which would allow a large-scale microinjection of fish eggs for a variety of applications in basic research and aquaculture.

1.
C.
Grabher
and
J.
Wittbrodt
,
Methods Mol. Biol.
461
,
521
(
2008
).
2.
J. N.
Rosen
,
M. F.
Sweeney
, and
J. D.
Mably
,
J. Vis. Exp.
25
,
e1115
(
2009
).
3.
H. B.
Huang
,
D.
Sun
,
J. K.
Mills
, and
S. H.
Cheng
,
IEEE Trans. Rob.
25
,
727
(
2009
).
4.
M.
Rembold
,
K.
Lahiri
,
N. S.
Foulkes
, and
J.
Wittbrodt
,
Nat. Protoc.
1
,
1133
(
2006
).
5.
O.
Lee
,
J. M.
Green
, and
C. R.
Tyler
,
Crit. Rev. Toxicol.
45
,
124
(
2015
).
6.
A.
Noori
,
P.
Ravi Selvaganapathy
, and
J.
Wilson
,
Lab Chip
9
,
3202
(
2009
).
7.
V.
Robles
,
E.
Cabrita
,
L.
Anel
, and
M. P.
Herráez
,
Aquaculture
261
,
1299
(
2006
).
8.
P.
Herráez
,
E.
Cabrita
, and
V.
Robles
, in
Aquaculture Biotechnology
(
Wiley-Blackwell
,
UK
,
2012
), pp.
303
317
.
10.
T.
Zhang
and
D. M.
Rawson
,
Cryobiology
37
,
13
(
1998
).
11.
D. M.
Rawson
,
T.
Zhang
,
D.
Kalicharan
, and
W. L.
Jongebloed
,
Aquacult. Res.
31
,
325
(
2000
).
12.
D. M.
Valdez
,
A.
Miyamoto
,
T.
Hara
,
S.
Seki
,
M.
Kasai
, and
K.
Edashige
,
Cryobiology
50
,
93
(
2005
).
13.
J.
Kopeika
,
T.
Zhang
, and
D.
Rawson
,
Cryo Lett.
27
,
319
(
2006
).
14.
S. M.
Rahman
,
C. A.
Strüssmann
,
T.
Suzuki
, and
M.
Watanabe
,
Theriogenology
79
,
853
(
2013
).
15.
M.
Janik
,
F. W.
Kleinhans
, and
M.
Hagedorn
,
Cryobiology
41
,
25
(
2000
).
16.
M. P.
Hughes
,
R.
Pethig
, and
X.-B.
Wang
,
J. Phys. D: Appl. Phys.
29
,
474
(
1996
).
17.
R.
Shirakashi
,
M.
Mischke
,
P.
Fischer
,
S.
Memmel
,
G.
Krohne
,
G. R.
Fuhr
,
H.
Zimmermann
, and
V. L.
Sukhorukov
,
Biochem. Biophys. Res. Commun.
428
,
127
(
2012
).
18.
T. B.
Jones
,
Electromechanics of Particles
(
Cambridge University Press
,
1995
).
19.
M.
Stubbe
and
J.
Gimsa
,
Biophys. J.
109
,
194
(
2015
).
20.
R.
Pethig
,
Biomicrofluidics
4
,
022811
(
2010
).
21.
R.
Pethig
,
Adv. Drug Delivery Rev.
65
,
1589
(
2013
).
22.
S.
Shim
,
K.
Stemke-Hale
,
J.
Noshari
,
F. F.
Becker
, and
P. R.
Gascoyne
,
Biomicrofluidics
7
,
011808
(
2013
).
23.
J.
Marchalot
,
J.-F.
Chateaux
,
M.
Faivre
,
H. C.
Mertani
,
R.
Ferrigno
, and
A.-L.
Deman
,
Biomicrofluidics
9
,
054104
(
2015
).
24.
J.
Gimsa
,
Interfacial Electrokinetics and Electrophoresis
(
Marcel Dekker Inc.
,
New York
,
2001
), pp.
369
400
.
25.
J.
Gimsa
,
T.
Müller
,
T.
Schnelle
, and
G.
Fuhr
,
Biophys. J.
71
,
495
(
1996
).
26.
H. M.
Jones
and
E. E.
Kunhardt
,
IEEE Trans. Dielectr. Electr. Insul.
1
,
1016
(
1994
).
27.
K. J.
Müller
,
M.
Horbaschek
,
K.
Lucas
,
U.
Zimmermann
, and
V. L.
Sukhorukov
,
Exp. Cell Res.
288
,
344
(
2003
).
28.
U.
Zimmermann
,
U.
Friedrich
,
H.
Mussauer
,
P.
Gessner
,
K.
Hamel
, and
V. L.
Sukhorukov
,
IEEE Trans. Plasma Sci.
28
,
72
(
2000
).
29.
T.
Schnelle
,
T.
Müller
,
R.
Hagedorn
,
A.
Voigt
, and
G.
Fuhr
,
Biochim. Biophys. Acta
1428
,
99
(
1999
).
30.
T. P.
Hunt
and
R. M.
Westervelt
,
Biomed. Microdevices
8
,
227
(
2006
).
31.
K.
Lee
,
S. G.
Kwon
,
S. H.
Kim
, and
Y. K.
Kwak
,
Sens. Actuators, A
136
,
154
(
2007
).
32.
U.
Terpitz
,
V. L.
Sukhorukov
, and
D.
Zimmermann
,
Assay Drug Dev. Technol.
11
,
9
(
2013
).
33.
S.-W.
Dessie
,
F.
Rings
,
M.
Holker
,
M.
Gilles
,
D.
Jennen
,
E.
Tholen
,
V.
Havlicek
,
U.
Besenfelder
,
V. L.
Sukhorukov
,
U.
Zimmermann
,
J. M.
Endter
,
M.-A.
Sirard
,
K.
Schellander
, and
D.
Tesfaye
,
Reproduction
133
,
931
(
2007
).
34.
J.
Andronic
,
R.
Shirakashi
,
S. U.
Pickel
,
K. M.
Westerling
,
T.
Klein
,
T.
Holm
,
M.
Sauer
, and
V. L.
Sukhorukov
,
PLoS One
10
,
e0119990
(
2015
).
35.
N.
Bobak
,
S.
Bittner
,
J.
Andronic
,
S.
Hartmann
,
F.
Mühlpfordt
,
T.
Schneider-Hohendorf
,
K.
Wolf
,
C.
Schmelter
,
K.
Göbel
,
P.
Meuth
,
H.
Zimmermann
,
F.
Döring
,
E.
Wischmeyer
,
T.
Budde
,
H.
Wiendl
,
S. G.
Meuth
, and
V. L.
Sukhorukov
,
Biochim. Biophys. Acta
1808
,
2036
(
2011
).
36.
R.
Shirakashi
,
V. L.
Sukhorukov
,
R.
Reuss
,
A.
Schulz
, and
U.
Zimmermann
,
J. Therm. Sci. Technol.
7
,
589
(
2012
).
37.
Y.
Tan
,
D.
Sun
,
W.
Huang
, and
S. H.
Cheng
,
IEEE Trans. NanoBiosci.
7
,
257
(
2008
).
38.
H.
Mussauer
,
V. L.
Sukhorukov
,
A.
Haase
, and
U.
Zimmermann
,
J. Membr. Biol.
170
,
121
(
1999
).
39.
K.
Nowak
,
E.
Mix
,
J.
Gimsa
,
U.
Strauss
,
K. K.
Sriperumbudur
,
R.
Benecke
, and
U.
Gimsa
,
Parkinson's Dis.
2011
,
414682
.
40.
C. F.
Leung
,
S. E.
Webb
, and
A. L.
Miller
,
Dev., Growth Differ.
40
,
313
(
1998
).
41.
J.
Topczewski
and
L.
Solnica-Krezel
,
Methods Cell Biol.
59
,
205
(
1999
).
42.
V.
Robles
,
E.
Cabrita
, and
M. P.
Herráez
,
Cryobiology
49
,
317
(
2004
).
43.
M.
Simeonova
,
D.
Wachner
, and
J.
Gimsa
,
Bioelectrochemistry
56
,
215
(
2002
).
44.
J.
Gimsa
,
M.
Stubbe
, and
U.
Gimsa
,
J. Electr. Bioimpedance
5
,
74
(
2014
).
45.
M.
Stubbe
and
J.
Gimsa
,
Colloids Surf., A
376
,
97
(
2011
).
46.
M.-Y.
Lu
,
Z.
Li
,
S.-M.
Hwang
,
B.
Linju Yen
, and
G.-B.
Lee
,
Biomicrofluidics
9
,
054107
(
2015
).
47.
S.
Wang
and
L. J.
Lee
,
Biomicrofluidics
7
,
11301
(
2013
).
48.
See supplementary material at http://dx.doi.org/10.1063/1.4936573 for Figs. S1 and S2.

Supplementary Material

You do not currently have access to this content.