Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system.

1.
I.-F.
Cheng
,
H.-L.
Yang
,
C.-C.
Chung
, and
H.-C.
Chang
,
Analyst
138
,
4656
(
2013
).
2.
J. O.
Hardin
and
V. T.
Milam
,
Soft Matter
7
,
2674
(
2011
).
3.
D. J.
Mai
,
C.
Brockman
, and
C. M.
Schroeder
,
Soft Matter
8
,
10560
(
2012
).
4.
S.-J.
Park
,
T. A.
Taton
, and
C. A.
Mirkin
,
Science
295
,
651
(
2002
).
5.
T. G.
Drummond
,
M. G.
Hill
, and
J. K.
Barton
,
Nat. Biotechnol.
21
,
1192
(
2003
).
6.
J.
Khandurina
,
T. E.
McKnight
,
S. C.
Jacobson
,
L. C.
Waters
,
R. S.
Foote
, and
J. M.
Ramsey
,
Anal. Chem.
72
,
2995
(
2000
).
7.
P.-A.
Auroux
,
Y.
Koc
,
A.
deMello
,
A.
Manz
, and
P. J. R.
Day
,
Lab Chip
4
,
534
(
2004
).
8.
A.
Estevez-Torres
and
D.
Baiql
,
Soft Matter
7
,
6746
(
2011
).
9.
I.
Vlassiouk
,
A.
Krasnoslobodtsev
,
S.
Smirnov
, and
M.
Germann
,
Langmuir
20
,
9913
(
2004
).
10.
A.
Wainright
,
U. T.
Nguyen
,
T.
Bjornson
, and
T. D.
Boone
,
Electrophoresis
24
,
3784
(
2003
).
11.
A.
Feng
,
N. T.
Tran
,
C.
Chen
,
J.
Hu
,
M.
Taverna
, and
P.
Zhou
,
Electrophoresis
32
,
1623
(
2011
).
12.
H.
Kim
,
J.
Kim
,
E.-G.
Kim
,
A. J.
Heinz
,
S.
Kwon
, and
H.
Chun
,
Biomicrofluidics
4
,
043014
(
2010
).
13.
R. J.
Meagher
and
N.
Thaitrong
,
Electrophoresis
33
,
1236
(
2012
).
14.
Z.-Y.
Wu
,
C.-Y.
Li
,
X.-L.
Guo
,
B.
Li
,
D.-W.
Zhang
,
Y.
Xu
, and
F.
Fang
,
Lab Chip
12
,
3408
(
2012
).
15.
D.-W.
Zhang
,
H.-Q.
Zhang
,
L.
Tian
,
L.
Wang
,
F.
Fang
,
K.
Liu
, and
Z.-Y.
Wu
,
Microfluid. Nanofluid.
14
,
69
(
2013
).
16.
M.-M.
Hsieh
,
W.-L.
Tseng
, and
H.-T.
Chang
,
Electrophoresis
21
,
2904
(
2000
).
17.
J.
Dai
,
T.
Ito
,
L.
Sun
, and
R. M.
Crooks
,
J. Am. Chem. Soc.
125
,
13026
(
2003
).
18.
D.
Stein
,
Z.
Deurvorst
,
F. H. J.
van der Heyden
,
W. J. A.
Koopmans
,
A.
Gabel
, and
C.
Dekker
,
Nano Lett.
10
,
765
(
2010
).
19.
S.
Li
,
W.
Cao
,
Y. S.
Hui
, and
W.
Wen
,
Nanoscale Res. Lett.
9
,
147
(
2014
).
20.
V.
Chaurey
,
C.
Polanco
,
C.-F.
Chou
, and
N. S.
Swami
,
Biomicrofluidics
6
,
012806
(
2012
).
21.
N.
Swami
,
C.-F.
Chou
,
V.
Ramamurthy
, and
V.
Chaurey
,
Lab Chip
9
,
3212
(
2009
).
22.
K.-T.
Liao
,
M.
Tsegaye
,
V.
Chaurey
,
C.-F.
Chou
, and
N. S.
Swami
,
Electrophoresis
33
,
1958
(
2012
).
23.
V.
Chaurey
,
A.
Rohanl
,
Y.-H.
Su
,
K.-T.
Liao
,
C.-F.
Chou
, and
N. S.
Swami
,
Electrophoresis
34
,
1097
(
2013
).
24.
R.
Pethig
,
Biomicrofluidics
4
,
022811
(
2010
).
25.
J.
Fu
,
J.
Yoo
, and
J.
Han
,
Phys. Rev. Lett.
97
,
018103
(
2006
).
26.
S.
Park
,
Y.
Zhang
,
T.-H.
Wang
, and
S.
Yang
,
Lab Chip
11
,
2893
(
2011
).
27.
N. R.
Beer
,
B. J.
Hindson
,
E. K.
Wheeler
,
S. B.
Hall
,
K. A.
Rose
,
I. M.
Kennedy
, and
B. W.
Colston
,
Anal. Chem.
79
,
8471
(
2007
).
28.
L.
Ying
,
S. S.
White
,
A.
Bruckbauer
,
L.
Meadows
,
Y. E.
Korchev
, and
D.
Klenerman
,
Biophys. J.
86
,
1018
(
2004
).
29.
T.
Leïchlé
and
C.-F.
Chou
,
Biomicrofluidics
9
,
034103
(
2015
).
30.
H.-P.
Chen
,
C.-C.
Tsai
,
H.-M.
Lee
,
S.-C.
Wang
, and
H.-C.
Chang
,
Biomicrofluidics
7
,
044110
(
2013
).
31.
Z.
Slouka
,
S.
Senapati
, and
H.-C.
Chang
,
Annu. Rev. Anal. Chem.
7
,
317
335
(
2014
).
You do not currently have access to this content.