Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

1.
E.
Meng
and
T.
Hoang
, “
MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications
,”
Adv. Drug Delivery Rev.
64
(
14
),
1628
1638
(
2012
).
2.
Y.
Li
,
H. L. H.
Duc
,
B.
Tyler
,
T.
Williams
,
M.
Tupper
,
R.
Langer
, and
M. J.
Cima
, “
In vivo delivery of BCNU from a MEMS device to a tumor model
,”
J. Controlled Release
106
(
1
),
138
145
(
2005
).
3.
P.-Y.
Li
,
J.
Shih
,
R.
Lo
,
S.
Saati
,
R.
Agrawal
,
M. S.
Humayun
,
Y.-C.
Tai
, and
E.
Meng
, “
An electrochemical intraocular drug delivery device
,”
Sens. Actuators, A
143
(
1
),
41
48
(
2008
).
4.
P.-Y.
Li
,
R.
Sheybani
,
C. A.
Gutierrez
,
J. T. W.
Kuo
, and
E.
Meng
, “
A parylene bellows electrochemical actuator
,”
J. Microelectromech. Syst.
19
(
1
),
215
228
(
2010
).
5.
S.
Roya
and
E.
Meng
, “
High-efficiency MEMS electrochemical actuators and electrochemical impedance spectroscopy characterization
,”
J. Microelectromech. Syst.
21
(
5
),
1197
1208
(
2012
).
6.
G.
Heidi
,
R.
Sheybani
,
P. Y.
Li
,
R.
Lo Mann
, and
E.
Meng
, “
An implantable MEMS micropump system for drug delivery in small animals
,”
Biomed. Microdevices
14
(
3
),
483
496
(
2012
).
7.
P. F.
Nazly
,
J. K.
Jackson
,
H. M.
Burt
, and
M.
Chiao
, “
A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing
,”
Lab Chip
11
(
18
),
3072
3080
(
2011
).
8.
P. F.
Nazly
,
J. K.
Jackson
,
H. M.
Burt
, and
M.
Chiao
, “
On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device
,”
Lab Chip
11
(
16
),
2744
2752
(
2011
).
9.
Y.
Yi
,
U.
Buttner
, and
I. G.
Foulds
, “
Towards an implantable pulsed mode electrolytic drug delivery system
,” in
17th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTas)
(Germany,
2013
), pp.
527
529
.
10.
S.
Ghosh
 et al, “
Oscillating magnetic field-actuated microvalves for micro- and nanofluidics
,”
J. Phys. D: Appl. Phys.
42
(
3
),
135501
(
2009
).
11.
Y.
Hirokawa
and
T.
Tanaka
, “
Volume phase transition in a nonionic gel
,”
J. Chem. Phys.
81
(
12
),
6379
6380
(
1984
).
12.
R.
Saunders
and
B.
Vincent
, “
Microgel particles as model colloids: theory, properties and applications
,”
Adv. Colloid Interface Science
80
(
1
),
1
25
(
1999
).
13.
X.
Zhuolin
,
H.
Wang
,
A.
Pant
,
G.
Pastorin
, and
C.
Lee
, “
Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery
,”
Biomicrofluidics
7
(
2
),
026502
(
2013
).
14.
V.
Santhisagar
,
I.
Tomazos
,
D. J.
Burgess
,
F. C.
Jain
, and
F.
Papadimitrakopoulos
, “
Emerging synergy between nanotechnology and implantable biosensors: A review
,”
Biosens. Bioelectron.
25
(
7
),
1553
1565
(
2010
).
15.
W.
Natalie
,
F.
Moussy
, and
W. M.
Reichert
, “
Characterization of implantable biosensor membrane biofouling
,”
Fresenius' J. Anal. Chem.
366
(
6–7
),
611
621
(
2000
).
16.
G.
Raeann
,
J. J.
Kehoe
,
S. L.
Barnes
,
B. A.
Kornilayev
,
M. A.
Alterman
, and
G. S.
Wilson
, “
Protein interactions with subcutaneously implanted biosensors
,”
Biomaterials
27
(
12
),
2587
2598
(
2006
).
17.
N.
Wisniewski
,
B.
Klitzman
,
B.
Miller
, and
W. M.
Reichert
, “
Decreased analyte transport through implanted membranes: Differentiation of biofouling from tissue effects
,”
J. Biomed. Mater. Res.
57
(
4
),
513
521
(
2001
).
18.
O.
Yoshinori
,
U.
Bhardwaj
,
F.
Papadimitrakopoulos
, and
D. J.
Burgess
, “
A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response
,”
J. Diabetes Sci. Technol.
2
(
6
),
1003
1015
(
2008
).
19.
B.
Upkar
,
F.
Papadimitrakopoulos
, and
D. J.
Burgess
, “
A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors
,”
J. Diabetes Sci. Technol.
2
(
6
),
1016
1029
(
2008
).
20.
A.
Prashanth
,
S. S.
Karajanagi
,
Ravi S.
Kane
, and
J. S.
Dordick
, “
Polymer–nanotube–enzyme composites as active antifouling films
,”
Small
3
(
1
),
50
53
(
2007
).
21.
R.
Kaushal
,
N. R.
Raravikar
,
D. Y.
Kim
,
L. S.
Schadler
,
P. M.
Ajayan
, and
J. S.
Dordick
, “
Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films
,”
Nano Lett.
3
(
6
),
829
832
(
2003
).
22.
H. R.
Luckarift
,
M. B.
Dickerson
,
K. H.
Sandhage
, and
J. C.
Spain
, “
Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania
,”
Small
2
(
5
),
640
643
(
2006
).
23.
B.
Upkar
,
R.
Sura
,
F.
Papadimitrakopoulos
, and
D. J.
Burgess
, “
Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/PVA hydrogel composites for implantable devices
,”
J. Diabetes Sci. Technol.
1
(
1
),
8
17
(
2007
).
24.
L. W.
Norton
,
H. E.
Koschwanez
,
N. A.
Wisniewski
,
B.
Klitzman
, and
W. M.
Reichert
, “
Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response
,”
J. Biomed. Mater. Res., Part A
81
(
4
),
858
869
(
2007
).
25.
S. D.
Patil
,
F.
Papadmitrakopoulos
, and
D. J.
Burgess
, “
Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis
,”
J. Controlled Release
117
(
1
),
68
79
(
2007
).
26.
M. C.
Frost
,
S. M.
Rudich
,
H.
Zhang
,
M. A.
Maraschio
, and
M. E.
Meyerhoff
, “
In vivo biocompatibility and analytical performance of intravascular amperometric oxygen sensors prepared with improved nitric oxide-releasing silicone rubber coating
,”
Anal. Chem.
74
(
23
),
5942
5947
(
2002
).
27.
G.
Evin
,
D.
Nagesha
,
S.
Sridhar
, and
M.
Amiji
, “
Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices
,”
Adv. Drug Delivery Rev.
62
(
3
),
305
315
(
2010
).
28.
V.
Gabriela
,
M. S.
Shive
,
R. S.
Shawgo
,
H. V.
Recum
, and
J. M.
Anderson
,
Michael J. Cima, and Robert Langer, “Biocompatibility and biofouling of MEMS drug delivery devices
,”
Biomaterials
24
(
11
),
1959
1967
(
2003
).
29.
Y.
Yi
,
U.
Buttner
, and
I. G.
Foulds
, “
A cyclically actuated electrolytic drug delivery device
,”
Lab Chip
(published online 2015).
30.
J. W.
Kim
,
A. S.
Utada
,
A.
Fernández-Nieves
 et al, “
Fabrication of monodisperse gel shells and functional microgels in microfluidic devices
,”
Angew. Chem.
119
(
11
),
1851
1854
(
2007
).
You do not currently have access to this content.