Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

1.
S.
Colin
, “
Microfluidics
,”
British Library Cataloguing-in-Publication Data
(
John Wiley & Sons, Inc.
,
2010
).
2.
J.
Ducrée
and
R.
Zengerle
, “
Flow map microfluidics roadmap for the life sciences
,”
FlowMap consortium & EC
(
Books on Demand GmbH, Norderstedt
,
Germany
,
2004
).
3.
N. T.
Nguyen
and
S. T.
Wereley
, “
Fundamentals and applications of microfluidics
,”
British Library Cataloguing in Publication Data
(
Artech House, Inc
,
2002
).
4.
J.
Pihl
,
M.
Karlsson
, and
D. T.
Chiu
, “
Microfluidic technologies in drug discovery
,”
Drug Discovery Today
10
(
20
),
1377
1383
(
2005
).
5.
T.
Wirth
,
Microreactors in Organic Synthesis and Catalysis
(
Wiley-VCH Verlag GmbH&Co. KgaA
,
Weinheim
,
2008
).
6.
D. B.
Weibel
and
G. M.
Whitesides
, “
Applications of microfluidics in chemical biology
,”
Curr. Opin. Chem. Biol.
10
,
584
591
(
2006
).
7.
L. K.
Minsker
and
A.
Renken
, “
Microstructured reactors for catalytic reactions,”
Catal. Today
110
,
2
14
(
2005
).
8.
N.
Nguyen
and
S. T.
Wereley
,
Fundamentals and Applications of Microfluidics
(
Artech House
,
Norwood
,
2006
).
9.
T.
McCreedy
, “
Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems
,”
TrAC, Trends Anal. Chem.
19
,
396
401
(
2000
).
10.
L.
Kim
,
Y. C.
Toh
,
J.
Voldman
, and
H.
Yu
, “
A practical guide to microfluidic perfusion culture of adherent mammalian cells
,”
Lab Chip
7
,
681
694
(
2007
).
11.
E. W. K.
Young
and
D. J.
Beebe
, “
Fundamentals of microfluidic cell culture in controlled microenvironments
,”
Chem. Soc. Rev.
39
(
3
),
1036
1048
(
2010
).
12.
J.
Némethné-Sóvágó
and
M.
Benke
, “
Microreactors: A new concept for chemical synthesis and technological feasibility (Review)
,”
Mater. Sci. Eng.
39
(
2
),
89
101
(
2014
).
13.
H.
Andersson
and
A.
v. d. Berg
,
Lab-on-Chips for Cellomics, Micro and Nanotechnologies for Life Science
(
Springer
,
The Netherlands
,
2004
).
14.
N.
Kockmann
, “
Micro process engineering: fundamentals, devices, fabrication and applications
,”
Advanced Micro & Nanosystems
(
WILEY-VCH, Verlag GmbH&Co. KGaA
,
Weinheim
,
2013
).
15.
A.
Šalić
,
A.
Tušek
, and
B.
Zelić
, “
Review: Application of microreactors in medicine and biomedicine
,”
J. Appl. Biomed.
10
,
137
153
(
2012
).
16.
S. D.
Stone
and
B. C.
Hollins
, “
Modeling shear stress in microfluidic channels for cellular applications
,”
29th Southern Biomedical Engineering Conference
,
2013
.
17.
D. J.
Beebe
,
G. A.
Mensing
, and
G. M.
Walker
, “
Physics and applications of microfluidics in biology
,”
Ann. Rev. Biomed. Eng.
4
,
261
286
(
2002
).
18.
T.
Das
and
S.
Chakraborty
, “
Biomicrofluidics: Recent trends and future challenges
,”
Sadhana
34
(
4
),
573
590
(
2009
).
19.
S. E.
Ong
,
S.
Zhang
,
H.
Du
, and
Y.
Fu
, “
Fundamental principles and applications of microfluidic systems
,”
Front. Biosci.
13
,
2757
2773
(
2008
).
20.
B. J.
Kim
and
M.
Wu
, “
Microfluidics for mammalian cell chemotaxis
,”
Ann. Biomed. Eng.
40
(
6
),
1316
1327
(
2012
).
21.
J. P.
Smith
,
A. C.
Barbati
,
S. M.
Santana
,
J. P.
Gleghorn
, and
B. J.
Kirby
, “
Microfluidic transport in microdevices for rare cell capture
,”
Electrophoresis
33
,
3133
3142
(
2012
).
22.
J. H.
Yeon
and
J. K.
Park
, “
Microfluidic cell culture systems for cellular analysis
,”
Biochip J.
1
(
1
),
17
27
(
2007
).
23.
M.
Mehling
and
S.
Tay
, “
Microfluidic cell culture
,”
Curr. Opin. Biotechnol.
25
,
95
102
(
2014
).
24.
S.
Halldorsson
,
E.
Lucumi
,
R.
Gomez-Sjöberg
, and
R. M.
Fleming
, “
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
,”
Biosens. Bioelectron.
15
(
63
),
218
231
(
2014
).
25.
K. M.
Fridley
,
M. A.
Kinney
, and
T. C
McDevitt
, “
Hydrodynamic modulation of pluripotent stem cells
,”
Stem Cell Res. Ther.
3
(
45
),
2
9
(
2012
).
26.
J.
El-Ali
,
P. K.
Sorger
, and
K. F.
Jensen
, “
Cells on chips
,”
Nature
442
,
403
411
(
2006
).
27.
B. G.
Chung
and
J.
Choo
, “
Microfluidic gradient platforms for controlling cellular behavior
,”
Electrophoresis
31
,
3014
3027
(
2010
).
28.
E.
Cimetta
,
C.
Cannizzaro
,
R.
James
,
T.
Biechele
,
R. T.
Moon
,
N.
Elvassore
, and
G.
Vunjak-Novakovic
, “
Microfluidic device generating stable concentration gradients for long term cell culture: Application to Wnt3a regulation of β-catenin signaling
,”
Lab Chip
10
,
3277
3283
(
2010
).
29.
T. M.
Keenan
and
A.
Folch
, “
Biomolecular gradients in cell culture systems
,”
Lab Chip
8
,
34
57
(
2008
).
30.
A. L.
Paguirigan
and
D. J.
Beebe
, “
Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays
,”
Bioessays
30
,
811
821
(
2008
).
31.
A.
Kunze
,
I.
Pushkarsky
,
H.
Kittur
, and
D. D.
Carlo
, “
Research highlights: Measuring and manipulating cell migration
,”
Lab Chip
14
,
4117
-
4121
(
2014
).
32.
S.
Kim
,
H. J.
Kimz
, and
N. L.
Jeon
, “
Biological applications of microfluidic gradient devices
,”
Integr. Biol.
2
,
584
603
(
2010
).
33.
S.
Toetsch
,
P.
Olwell
,
A.
Prina-Mello
, and
Y.
Volkov
, “
The evolution of chemotaxis assays from static models to physiologically relevant platforms
,”
Integr. Biol.
1
,
170
181
(
2009
).
34.
J.
Sai
,
G.
Walker
,
J.
Wikswo
, and
A.
Richmond
, “
The IL sequence in the LLKIL motif in CXCR2 Is required for full ligand-induced activation of erk, akt, and chemotaxis in HL60 cells
,”
J. Biol. Chem.
281
(
47
),
35931
35941
(
2006
).
35.
K. I.
Hulkower
and
R. L.
Herber
, “
Review: Cell migration and invasion assays as tools for drug discovery
,”
Pharmaceutics
3
,
107
124
(
2011
).
36.
B.
Nandy
, “
Theoretical studies of the chemotaxis of biological cells
,” Ph.D thesis (University of Duisburg-Essen,
2008
).
37.
S. J.
Wang
,
W.
Saadi
,
F.
Lin
,
C. M. C.
Nguyen
, and
N. L.
Jeon
, “
Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis
,”
Exp. Cell Res.
300
,
180
189
(
2004
).
38.
O.
Yesil-Celiktas
,
C.
Sevimli
,
E.
Bedir
, and
F.
Vardar-Sukan
, “
Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of human cancer cell lines
,”
Plant Foods Hum. Nutr.
65
,
158
163
(
2010
).
39.
W.
Tai
,
C. F.
Yeh
,
C. C.
Wu
, and
C. H.
Hsu
, “
A microfluidic device for sorting cancer cells based on cell motility
,”
15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 2-6, 2011, Seattle
,
Washington
,
USA
,
2011
.
40.
S. W.
Rhee
, “
Compartmented microfluidic device for positioning and chemotactic migration of cells
,”
BioChip J
5
(
2
),
129
136
(
2011
).
41.
U.
Tata
,
S. M. N.
Rao
,
A.
Sharma
,
K.
Pabba
,
K.
Pokhrel
,
B.
Adhikari
,
V. K.
Lin
, and
J-C
Chiao
, “
Study of lung-metastasized prostate cancer cell line chemotaxis to epidermal growth factor with a BIOMEMS device
,”
Adv. Nat. Sci.: Nanosci. Nanotechnol.
3
,
035007
(
2012
).
42.
S. M. N.
Rao
,
V. K.
Lin
,
U.
Tata
,
G. V.
Raj
,
J. T.
Hsieh
,
K.
Nguyen
, and
J. C.
Chiao
, “
Research paper: Demonstration of cancer cell migration using a novel microfluidic device
,”
J. Nanotechnol. Eng. Med.
1
(
2
),
021003
(
2010
).
43.
C.
Zhang
,
S.
Jang
,
O. C.
Amadi
,
K.
Shimizu
,
R. T.
Lee
, and
R. N.
Mitchell
, “
Clinical study: A sensitive chemotaxis assay using a novel microfluidic device, Hindawi publishing corporation
,”
BioMed Res. Int.
2013
,
Article ID 373569
.
44.
Q.
Kong
,
R. J.
Majeska
, and
M.
Vazquez
, “
Migration of connective tissue-derived cells is mediated by ultra-low concentration gradient fields of EGF
,”
Exp. Cell Res.
317
,
1491
1502
(
2011
).
45.
J. J. H.
Chong
and
C. E.
Murry
, “
Cardiac regeneration using pluripotent stem cells—Progression to large animal models
,”
Stem Cell Res.
13
,
654
665
(
2014
).
46.
K.
Natarajan
,
C.
Tian
,
B.
Xiang
,
C.
Chi
,
J.
Deng
,
R.
Zhang
,
D. H.
Freed
,
R. C.
Arora
,
G.
Tian
, and
F.
Lin
, “
Selection of chemotactic adipose-derived stem cells using a microfluidic gradient generator
,”
RSC Adv.
5
,
6332
6339
(
2015
).
47.
F.
Lin
,
C. M.
Nguyen
,
S. J.
Wang
,
W.
Saadi
,
S. P.
Gross
, and
N. L.
Jeon
, “
Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices
,”
Ann. Biomed. Eng.
33
(
4
),
475
482
(
2005
).
48.
G.
Servant
,
O. D.
Weiner
,
P.
Herzmark
,
T.
Balla
,
J. W.
Sedat
, and
H. R.
Bourne
, “
Polarization of chemoattractant receptor signaling during neutrophil chemotaxis
,”
Science
287
(
5455
),
1037
1040
(
2000
).
49.
S. Y.
Cheng
,
S.
Heilman
,
M.
Wasserman
,
S.
Archer
,
M. L.
Shulerac
, and
M.
Wu
, “
A hydrogel-based microfluidic device for the studies of directed cell migration
,”
Lab Chip
7
,
763
769
(
2007
).
50.
G. J.
Randolph
,
V.
Angeli
, and
M. A.
Swartz
, “
Dendritic-cell trafficking to lymph nodes through lymphatic vessels,”
Nat. Rev. Immunol.
5
,
617
628
(
2005
).
51.
U.
Haessler
,
M.
Pisanoa
,
M.
Wub
, and
M. A.
Swartz
, “
Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19
,”
Proc. Natl. Acad. Sci. USA
108
(
14
),
5614
5619
(
2011
).
52.
A. G. G.
Toh
,
Z. P.
Wang
,
C.
Yang
, and
N. T.
Nguyen
, “
Engineering microfluidic concentration gradient generators for biological applications
,”
Microfluid. Nanofluid.
16
,
1
18
(
2014
).
53.
P.
Friedl
and
K.
Wolf
, “
Tumour-cell invasion and migration: Diversity and escape mechanisms,”
Nat. Rev. Cancer
3
,
362
374
(
2003
).
54.
S. M. N.
Rao
,
C.
Huggins
,
M.
Rahimi
,
K.
Nguyen
, and
J. C.
Chiao
, “
Chemokine gradient formation in microfluidic devices to investigate prostate cancer cell migration
,”
Proc. SPIE
7270
,
727015
(
2008
).
55.
W.
Saadi
,
S. J.
Wang
,
F.
Lin
, and
N. L.
Jeon
,
Chemotaxis of Metastatic Breast Cancer Cells in Parallel Gradient Microfluidic Chambers
(
NSTI-Nanotech
,
2005
), Vol.
1
.
56.
U.
Haessler
,
Y.
Kalinin
,
M. A.
Swartz
, and
M.
Wu
, “
An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies
,”
Biomed. Microdev.
11
,
827
835
(
2009
).
57.
E. K.
Sackmann
,
E.
Berthier
,
E. W. K.
Young
,
M. A.
Shelef
,
S. A.
Wernimont
,
A.
Huttenlocher
, and
D. J.
Beebe
, “
Microfluidic kit-on-a-lid: A versatile platform for neutrophil chemotaxis assays
,”
Blood
120
(
14
),
e45
e53
(
2012
).
58.
A.
Shamloo
,
N.
Ma
,
M.
Poo
,
L. L.
Sohn
, and
S. C.
Heilshorn
, “
Endothelial cell polarization and chemotaxis in a microfluidic device
,”
Lab Chip
8
,
1292
1299
(
2008
).
59.
K. A.
Hotchkiss
,
A. W.
Ashton
,
R. S.
Klein
,
M. L.
Lenzi
,
G. H.
Zhu
, and
E. L.
Schwartz
, “
Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration
,”
Cancer Res.
63
,
527
533
(
2003
).
60.
S.
Hsu
,
R.
Thakar
,
D.
Liepmann
, and
S.
Li
, “
Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces
,”
Biochem. Biophys. Res. Commun.
337
(
11
),
401
409
(
2005
).
61.
Y.
Wang
,
J.
Chang
,
K. D.
Chen
,
S.
Li
,
J. Y. S.
Li
,
C.
Wu
, and
S.
Chien
, “
Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress
,”
Proc. Natl. Acad. Sci. USA
104
(
21
),
8875
8879
(
2007
).
62.
C.
Xu
,
Y. K. C.
Poh
,
I.
Roes
,
E. D.
O'Cearbhaill1
,
M. E.
Matthiesen
,
L.
Mu
,
S. Y.
Yang
,
D.
Miranda-Nieves
,
D.
Irimia
, and
J. M.
Karp
, “
A portable chemotaxis platform for short and long term analysis
,”
PLoS One
7
(
9
),
e44995
(
2012
).
63.
A.
Renner
,
M. S.
Jaeger
,
A.
Lankenau
, and
C.
Duschl
, “
Position-dependent chemotactic response of slowly migrating cells in sigmoidal concentration profiles
,”
Appl. Phys. A
112
,
637
645
(
2013
).
64.
J.
Berthier
and
P.
Silberzan
,
Microfluidics for Biotechnology
(
Artech House, Norwood
,
MA
,
2010
).
65.
P.
Neužil
,
S.
Giselbrecht
,
K.
Länge
,
T. J.
Huang
, and
A.
Manz
, “
Revisiting lab-on-a-chip technology for drug discovery
,”
Nat. Rev. Drug Discovery
11
,
620
632
(
2012
).
66.
S.
Selimovic
,
M. R.
Dokmeci
, and
A.
Khademhosseini
, “
Organs-on-a-chip for drug discovery
,”
Curr. Opin. Pharmacol.
13
,
829
833
(
2013
).
67.
N. S.
Bhise
,
J.
Ribas
,
V.
Manoharan
,
Y. S.
Zhang
,
A.
Polini
,
S.
Massa
,
M. R.
Dokmeci
, and
K.
Ali
, “
Organ-on-a-chip platforms for studying drug delivery systems
,”
J. Controlled Release
190
,
82
93
(
2014
).
68.
S. Z.
Razzackia
,
P. K.
Thwara
,
M.
Yanga
,
V. M.
Ugazb
, and
M. A.
Burns
, “
Integrated microsystems for controlled drug delivery
,”
Adv. Drug Delivery Rev.
56
,
185
198
(
2004
).
69.
M.
Håkanson
,
E.
Cukierman
, and
M.
Charnley
, “
Miniaturized pre-clinical cancer models as research and diagnostic tools
,”
Adv. Drug Delivery Rev.
69–70
,
52
66
(
2014
).
70.
I.
Wagner
,
E. M.
Materne
,
S.
Brincker
,
U.
Sussbier
,
C.
Fradrich
,
M.
Busek
,
F.
Sonntag
,
D. A.
Sakharov
,
E. V.
Trushkin
,
A. G.
Tonevitsky
,
R.
Lauster
, and
U.
Marx
, “
A dynamic multi organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture
,”
Lab Chip
13
,
3538
3547
(
2013
).
71.
A. M.
Ghaemmaghami
,
M. J.
Hancock
,
H.
Harrington
,
H.
Kaji
, and
A.
Khademhosseini
, “
Biomimetic tissues on a chip for drug discovery
,”
Drug Discovery Today
17
(
3-4
),
173
181
(
2012
).
72.
A.
Williamson
,
S.
Singh
,
U.
Fernekorn
, and
A.
Schober
, “
The future of the patient-specific body-on-a-chip
,”
Lab Chip
13
,
3471
3480
(
2013
).
73.
J. P.
Wikswo
,
E. L.
Curtis
,
Z. E.
Eagleton
,
B. C.
Evans
,
A.
Kole
,
L. H.
Hofmeisterab
, and
W. J.
Matloff
, “
Scaling and systems biology for integrating multiple organs-on-a-chip
,”
Lab Chip
13
,
3496
3511
(
2013
).
74.
D.
Kim
,
X.
Wu
,
A. T.
Young
, and
C. L.
Haynes
, “
Microfluidics-based in vivo mimetic systems for the study of cellular biology
,”
Acc. Chem. Res.
47
,
1165−1173
(
2014
).
75.
M. L.
Shuler
and
M. B.
Esch
, “
Body-on-a chip: Using microfluidic systems to predict human responses to drugs
,”
Pure Appl. Chem.
82
,
1635
1645
(
2010
).
76.
D.
Huh
,
Y.-S.
Torisawa
,
G. A.
Hamilton
,
H. J.
Kim
, and
D. E.
Ingber
, “
Microengineered physiological biomimicry: Organs-on-chips
,”
Lab Chip
12
,
2156
2164
(
2012
).
77.
D.
Huh
,
G. A.
Hamilton
, and
D. E.
Ingber
, “
From 3D cell culture to organs-on-chips
,”
Trends Cell Biol.
21
(
12
),
745
754
(
2011
).
78.
Y.
Sei
,
K.
Justus
,
P.
LeDuc
, and
Y. T.
Kim
, “
Engineering living systems on chips: From cells to human on chips
,”
Microfluid. Nanofluid.
16
,
907
920
(
2014
).
79.
M.
Björnmalm
,
Y.
Yan
, and
F.
Caruso
, “
Engineering and evaluating drug delivery particles in microfluidic devices
,”
J. Controlled Release
190
,
139
149
(
2014
).
80.
S.
Sugiura
,
J.
Edahiro
,
K.
Kikuchi
,
K.
Sumaru
, and
T.
Kanamori
, “
Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay
,”
Biotechnol. Bioeng.
100
,
1156
1165
(
2008
).
81.
F.
Shen
,
X. J.
Li
, and
P. C. H.
Li
, “
Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations
,”
Biomicrofluidics
8
,
014109
(
2014
).
82.
M.
Huanga
,
S.
Fana
,
W.
Xing
, and
C.
Liu
, “
Microfluidic cell culture system studies and computational fluid dynamics
,”
Math. Comput. Modell.
52
,
2036
2042
(
2010
).
83.
S.
Prakash
and
J.
Yeom
, “
Nanofluidics and microfluidics systems and applications
,”
British Library Cataloguing in Publication Data
(
Elsevier Inc.
,
2014
).
84.
N. T.
Elliott
and
F.
Yuan
, “
A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors
,”
Biotechnol. Bioeng.
109
(
5
),
1326
1335
(
2012
).
85.
C. L.
Walsh
,
B. M.
Babin
,
R. W.
Kasinskas
,
J. A.
Foster
,
M. J.
McGarry
, and
N. S.
Forbes
, “
A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics
,”
Lab Chip
9
,
545
554
(
2009
).
86.
K.
Ziolkowska
,
A.
Stelmachowska
,
R.
Kwapiszewski
,
M.
Chudy
,
A.
Dybko
, and
Z.
Brzozka
, “
Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip
,”
Biosens. Bioelectron.
40
,
68
74
(
2013
).
87.
O.
Moreno-Arotzena
,
G.
Mendoza
,
M.
Cóndor
,
T.
Rüberg
, and
J. M.
García-Aznar
, “
Inducing chemotactic and haptotatic cues in microfluidic devices for three-dimensional in vitro assays
,”
Biomicrofluidics
8
(
6
),
064122
(
2014
).
88.
K. J.
Lee
,
S. Y.
Yang
, and
W. H.
Ryu
, “
Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device
,”
Biomed. Microdevices
14
,
583
593
(
2012
).
89.
F.
Wang
,
H.
Wang
,
J.
Wang
,
H. Y.
Wang
,
P. L.
Rummel
,
S. V.
Garimella
, and
C.
Lu
, “
Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing
,”
Biotechnol. Bioeng.
100
(
1
),
150
158
(
2008
).
90.
O.
Yesil-Celiktas
,
“Patenting trends in enzyme related microfluidic applications
,”
Biochem. Eng. J.
92
,
53
62
(
2014
).
91.
D.
Karabulut
,
S.
Akay
,
A.
Kazan
,
S.
Sargin
,
B.
Cetin
, and
O.
Yesil-Celiktas
, “
A miniaturized device for hydrolysis of ginseng RB1
,”
Proceedings of 2nd Novel Fluidic Technologies and Applications Workshop
, 9-10 April, Izmir, Turkey, 2015 (
2015
), pp.
34
35
.
92.
H.
Li
,
J. J.
Whittenberg
,
H.
Zhou
,
D.
Ranganathan
,
A. V.
Desai
,
J.
Koziol
,
D.
Zeng
,
P. J. A.
Kenis
, and
D. E.
Reichert
, “
Development of a microfluidic "click chip" incorporating an immobilized Cu(i) catalyst
,”
RSC Adv.
5
(
8
),
6142
6150
(
2015
).
93.
S.
Jomeh
and
M.
Hoorfar
, “
Numerical modeling of mass transport in microfluidic biomolecule-capturing devices equipped with reactive surfaces
,”
Chem. Eng. J.
165
(
2
),
668
677
(
2010
).
94.
See http://www.desenmikrotek.com for commercially available microfluidic cell culture devices; accessed 30 april
2015
.
You do not currently have access to this content.