This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This “Lab-on-a-Disc” platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10−7 cells ml−1 within a 4 μl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care.

1.
G.
Schmiemann
,
E.
Kniehl
,
K.
Gebhardt
 et al,
Dtsch. Arztebl. Int.
107
(
21
),
361
(
2010
).
2.
S.
Salvatore
,
S.
Salvatore
,
E.
Cattoni
 et al,
Eur. J. Obstet. Gynecol. Reprod. Biol.
156
(
2
),
131
(
2011
).
3.
W. E.
Stamm
and
S. R.
Norrby
,
J. Infect. Dis.
183
(Suppl
1
),
S1
(
2001
).
4.
M.
Grabe
,
T. E.
Bjerklund-Johansen
,
H.
Botto
 et al, “
Guidelines on Urological Infections
,” European Association of Urology, 2013; available at http://uroweb.org/wp-content/uploads/18_Urological-infections_LR.pdf.
5.
D. I.
Andersson
and
D.
Hughes
,
Nat. Rev. Microbiol.
8
(
4
),
260
(
2010
).
6.
I.
Wiegand
,
K.
Hilpert
, and
R. E.
Hancock
,
Nat. Protoc.
3
(
2
),
163
(
2008
).
7.
F. C.
Tenover
,
Am. J. Med.
119
(
6, Suppl 1
),
S3
(
2006
).
8.
A. E.
Clark
,
E. J.
Kaleta
,
A.
Arora
 et al,
Clin. Microbiol. Rev.
26
(
3
),
547
(
2013
).
9.
M. J.
Pallen
,
N. J.
Loman
, and
C. W.
Penn
,
Curr. Opin. Microbiol.
13
(
5
),
625
(
2010
).
10.
L.
Song
,
W. C.
Li
,
G. X.
Li
 et al,
J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
935
,
32
(
2013
).
11.
J.
Kulpakko
,
K.
Kopra
, and
P.
Hanninen
,
Anal. Biochem.
470
,
1
(
2015
).
12.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discovery
5
(
3
),
210
(
2006
).
13.
R.
Burger
,
P.
Reith
,
G.
Kijanka
 et al,
Lab Chip
12
(
7
),
1289
(
2012
).
14.
R.
Burger
,
P.
Reith
,
V.
Akujobi
 et al,
Microfluid. Nanofluid.
13
(
4
),
675
(
2012
).
15.
L.
Bousse
,
C.
Cohen
,
T.
Nikiforov
 et al,
Annu. Rev. Biophys. Biomol. Struct.
29
,
155
(
2000
).
16.
A.
Bange
,
H. B.
Halsall
, and
W. R.
Heineman
,
Biosens. Bioelectron.
20
(
12
),
2488
(
2005
).
17.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
 et al,
Anal. Chem.
82
(
1
),
3
(
2010
);
[PubMed]
W. L.
Then
and
G.
Garnier
,
Rev. Anal. Chem.
32
(
4
),
269
(
2013
).
18.
A.
Mata
,
A. J.
Fleischman
, and
S.
Roy
,
Biomed. Microdevices
7
(
4
),
281
(
2005
).
19.
E.
Roy
,
J. C.
Galas
, and
T.
Veres
,
Lab Chip
11
(
18
),
3193
(
2011
).
20.
R.
Burger
,
D.
Kurzbuch
,
R.
Gorkin
 et al,
Lab Chip
15
(
2
),
378
(
2015
).
21.
J. W.
Lichtman
and
J. A.
Conchello
,
Nat. Methods
2
(
12
),
910
(
2005
).
22.
K.
Galler
,
K.
Brautigam
,
C.
Grosse
 et al,
Analyst
139
(
6
),
1237
(
2014
).
23.
C.
Krafft
,
G.
Steiner
,
C.
Beleites
 et al,
J. Biophotonics
2
(
1–2
),
13
(
2009
);
[PubMed]
S.
Wachsmann-Hogiu
,
T.
Weeks
, and
T.
Huser
,
Curr. Opin. Biotechnol.
20
(
1
),
63
(
2009
).
[PubMed]
24.
K.
Maquelin
,
C.
Kirschner
,
L. P.
Choo-Smith
 et al,
J. Clin. Microbiol.
41
(
1
),
324
(
2003
).
25.
U. C.
Schroeder
,
A.
Ramoji
,
U.
Glaser
 et al,
Anal. Chem.
85
(
22
),
10717
(
2013
).
26.
S.
Kloss
,
B.
Kampe
,
S.
Sachse
 et al,
Anal. Chem.
85
(
20
),
9610
(
2013
).
27.
G.
Rusciano
,
P.
Capriglione
,
G.
Pesce
 et al,
Laser Phys. Lett.
10
(
7
),
075603
(
2013
).
28.
I. F.
Cheng
,
H. C.
Chang
,
T. Y.
Chen
 et al,
Sci. Rep.
3
,
2365
(
2013
);
[PubMed]
I. F.
Cheng
,
T. Y.
Chen
,
R. J.
Lu
 et al,
Nanoscale Res. Lett.
9
,
324
(
2014
).
[PubMed]
29.
H.
Cho
and
L. P.
Lee
, in
Proceedings of the 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2006)
(
Society for Chemistry and Micro-Nano Systems
,
Tokyo, Japan
,
2006
), p.
642
.
30.
D.
Cialla
,
A.
Marz
,
R.
Bohme
 et al,
Anal. Bioanal. Chem.
403
(
1
),
27
(
2012
).
31.
R.
Peytavi
,
F. R.
Raymond
,
D.
Gagne
 et al,
Clin. Chem.
51
(
10
),
1836
(
2005
).
32.
M. D.
Abramoff
,
P. J.
Magalhaes
, and
S. J.
Ram
,
Biophotonics Int.
11
(
7
),
36
(
2004
) (ISSN: 1081-8693, Laurin Publishing).
33.
H.
Martens
,
J. P.
Nielsen
, and
S. B.
Engelsen
,
Anal. Chem.
75
(
3
),
394
(
2003
).
34.
E. H.
Kass
and
M.
Finland
,
J. Urol.
168
(
2
),
420
(
2002
).
35.
R. G.
Holdich
,
Fundamentals of Particle Technology
(
Midland Information Technology and Publishing
,
2002
).
36.
M. T.
Madigan
,
J. M.
Martinko
,
D.
Stahl
 et al,
Biology of Microorganisms
(
Benjamin Cummings
,
2010
).
37.
R.
Gorkin
,
R.
Burger
,
D.
Kurzbuch
 et al, in
Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 2–6, Seattle, WA, USA
(
Chemical and Biological Microsystems Society
,
2011
), p.
924
.
38.
M. E.
Winter
,
Proc. SPIE
3753
,
266
(
1999
).
39.
N.
Bergner
,
C.
Krafft
,
K. D.
Geiger
 et al,
Anal. Bioanal. Chem.
403
(
3
),
719
(
2012
).
40.
C.
Grosse
,
N.
Bergner
,
J.
Dellith
 et al,
Anal. Chem.
87
(
4
),
2137
(
2015
).
41.
S. C.
Bae
,
H.
Lee
,
Z. Q.
Lin
 et al,
Langmuir
21
(
13
),
5685
(
2005
).
42.
I.
Notingher
,
S.
Verrier
,
H.
Romanska
 et al,
Spectrosc. Int. J.
16
(
2
),
43
(
2002
);
I.
Notingher
,
Sensors
7
(
8
),
1343
(
2007
).
43.
A.
Harz
,
P.
Rosch
, and
J.
Popp
,
Cytometry Part A
75
(
2
),
104
(
2009
);
C.
Kirschner
,
K.
Maquelin
,
P.
Pina
 et al,
J. Clin. Microbiol.
39
(
5
),
1763
(
2001
).
[PubMed]
44.
D. J.
Kinahan
,
S. M.
Kearney
,
M. T.
Glynn
 et al,
Sens. Actuators, A
215
,
71
(
2014
);
R.
Burger
,
N.
Reis
,
J. G.
da Fonseca
 et al,
J. Micromech. Microeng.
23
(
3
),
035035
(
2013
);
J.
Steigert
,
T.
Brenner
,
M.
Grumann
 et al,
Biomed. Microdevices
9
(
5
),
675
(
2007
);
[PubMed]
S.
Haeberle
,
T.
Brenner
,
R.
Zengerle
 et al,
Lab Chip
6
(
6
),
776
(
2006
).
[PubMed]
45.
D.
Kirby
,
M.
Glynn
,
G.
Kijanka
 et al,
Cytometry A
87
(
1
),
74
(
2015
);
[PubMed]
M.
Glynn
,
D.
Kirby
,
D.
Chung
 et al,
JALA
19
(
3
),
285
(
2014
);
[PubMed]
D.
Kirby
,
J.
Siegrist
,
G.
Kijanka
 et al,
Microfluid. Nanofluid.
13
(
6
),
899
(
2012
).
You do not currently have access to this content.