Biomimetic scaffolds approaching physiological scale, whose size and large cellular load far exceed the limits of diffusion, require incorporation of a fluidic means to achieve adequate nutrient/metabolite exchange. This need has driven the extension of microfluidic technologies into the area of biomaterials. While construction of perfusable scaffolds is essentially a problem of microfluidic device fabrication, functional implementation of free-standing, thick-tissue constructs depends upon successful integration of external pumping mechanisms through optimized connective assemblies. However, a critical analysis to identify optimal materials/assembly components for hydrogel substrates has received little focus to date. This investigation addresses this issue directly by evaluating the efficacy of a range of adhesive and mechanical fluidic connection methods to gelatin hydrogel constructs based upon both mechanical property analysis and cell compatibility. Results identify a novel bioadhesive, comprised of two enzymatically modified gelatin compounds, for connecting tubing to hydrogel constructs that is both structurally robust and non-cytotoxic. Furthermore, outcomes from this study provide clear evidence that fluidic interconnect success varies with substrate composition (specifically hydrogel versus polydimethylsiloxane), highlighting not only the importance of selecting the appropriately tailored components for fluidic hydrogel systems but also that of encouraging ongoing, targeted exploration of this issue. The optimization of such interconnect systems will ultimately promote exciting scientific and therapeutic developments provided by microfluidic, cell-laden scaffolds.

1.
C. K.
Griffith
,
C.
Miller
,
R. C. A.
Sainson
,
J. W.
Calvert
,
N. L.
Jeon
,
C. C. W.
Hughes
, and
S. C.
George
,
Tissue Eng.
11
,
257
266
(
2005
).
2.
J. M.
Ruano
,
A.
Glidle
,
A.
Cleary
,
A.
Walmsley
,
J. S.
Aitchison
, and
J. M.
Cooper
,
Biosens. Bioelectron.
18
,
175
184
(
2003
).
3.
I.
Barbulovic-Nad
,
H.
Yang
,
P. S.
Park
, and
A. R.
Wheeler
,
Lab Chip
8
,
519
(
2008
).
4.
B. J.
Kirby
,
A. R.
Wheeler
,
R. N.
Zare
,
J. A.
Fruetel
, and
T. J.
Shepodd
,
Lab Chip
3
,
5
10
(
2003
).
5.
H.
Fan
,
Y.
Lu
,
A.
Stump
,
S.
Reed
,
T.
Baer
,
R.
Schunk
,
V. V.
Perez-Luna
,
G. P.
Lopez
, and
C. J.
Brinker
,
Nature
405
,
56
60
(
2000
).
6.
T. C.
Penn
,
Science
208
,
923
926
(
1980
).
7.
J. S.
Mellors
,
V.
Gorbounov
,
R. S.
Ramsey
, and
J. M.
Ramsey
,
Anal. Chem.
80
,
6881
6887
(
2008
).
8.
M. A.
Unger
,
H. P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
,
Science
288
,
113
116
(
2000
).
9.
C. S.
Chen
,
M.
Mrksich
,
S.
Huang
,
G. M.
Whitesides
, and
D. E.
Ingber
,
Science
276
,
1425
1428
(
1997
).
10.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J.
Schueller
, and
G. M.
Whitesides
,
Electrophoresis
21
,
27
40
(
2000
).
11.
C. A.
Bichsel
,
S.
Gobaa
,
S.
Kobel
,
C.
Secondini
,
G. N.
Thalmann
,
M. G.
Cecchini
, and
M. P.
Lutolf
,
Lab Chip
12
,
2313
2316
(
2012
).
12.
I. E.
Araci
,
B.
Su
,
S. R.
Quake
, and
Y.
Mandel
,
Nat. Med.
20
,
1074
1078
(
2014
).
13.
F. B.
Myers
and
L. P.
Lee
,
Lab Chip
8
,
2015
2031
(
2008
).
14.
Y.
Chen
,
P.
Li
,
P.-H.
Huang
,
Y.
Xie
,
J. D.
Mai
,
L.
Wang
,
N.-T.
Nguyen
, and
T. J.
Huang
,
Lab Chip
14
,
626
645
(
2014
).
15.
M.
Mehling
and
S.
Tay
,
Curr. Opin. Biotechnol.
25
,
95
102
(
2014
).
16.
S.
Faley
,
K.
Seale
,
J.
Hughey
,
D. K.
Schaffer
,
S.
VanCompernolle
,
B.
McKinney
,
F.
Baudenbacher
,
D.
Unutmaz
, and
J. P.
Wikswo
,
Lab Chip
8
,
1700
1712
(
2008
).
17.
S. N.
Bhatia
and
D. E.
Ingber
,
Nat. Biotechnol.
32
,
760
772
(
2014
).
18.
M.
Odijk
,
A. D.
van der Meer
,
D.
Levner
,
H. J.
Kim
,
M. W.
van der Helm
,
L. I.
Segerink
,
J.-P.
Frimat
,
G. A.
Hamilton
,
D. E.
Ingber
, and
A.
van den Berg
,
Lab Chip
15
,
745
752
(
2015
).
19.
M. B.
Esch
,
G. J.
Mahler
,
T.
Stokol
, and
M. L.
Shuler
,
Lab Chip
14
,
3081
3092
(
2014
).
20.
M. L.
Shuler
and
J. J.
Hickman
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
13682
13683
(
2014
).
21.
J. P.
Wikswo
,
E. L.
Curtis
,
Z. E.
Eagleton
,
B. C.
Evans
,
A.
Kole
,
L. H.
Hofmeister
, and
W. J.
Matloff
,
Lab Chip
13
,
3496
3511
(
2013
).
22.
Y.
Torisawa
,
C. S.
Spina
,
T.
Mammoto
,
A.
Mammoto
,
J. C.
Weaver
,
T.
Tat
,
J. J.
Collins
, and
D. E.
Ingber
,
Nat. Methods
11
,
663
669
(
2014
).
23.
K. T.
Seale
,
S. L.
Faley
,
J.
Chamberlain
, and
J. P.
Wikswo
,
Exp. Biol. Med. (Maywood)
235
,
777
783
(
2010
).
24.
S.
Kruss
,
L.
Erpenbeck
,
M. P.
Schön
, and
J. P.
Spatz
,
Lab Chip
12
,
3285
3289
(
2012
).
25.
N.
Sadr
,
M.
Zhu
,
T.
Osaki
,
T.
Kakegawa
,
Y.
Yang
,
M.
Moretti
,
J.
Fukuda
, and
A.
Khademhosseini
,
Biomaterials
32
,
7479
7490
(
2011
).
26.
N. W.
Choi
,
M.
Cabodi
,
B.
Held
,
J. P.
Gleghorn
,
L. J.
Bonassar
, and
A. D.
Stroock
,
Nat. Mater.
6
,
908
915
(
2007
).
27.
A. P.
Golden
and
J.
Tien
,
Lab Chip
7
,
720
725
(
2007
).
28.
D. B.
Kolesky
,
R. L.
Truby
,
A. S.
Gladman
,
T. A.
Busbee
,
K. A.
Homan
, and
J. A.
Lewis
,
Adv. Mater.
26
,
3124
3130
(
2014
).
29.
L. E.
Bertassoni
,
M.
Cecconi
,
V.
Manoharan
,
M.
Nikkhah
,
J.
Hjortnaes
,
A. L.
Cristino
,
G.
Barabaschi
,
D.
Demarchi
,
M. R.
Dokmeci
,
Y.
Yang
, and
A.
Khademhosseini
,
Lab Chip
14
,
2202
2211
(
2014
).
30.
Y.
Du
,
E.
Lo
,
S.
Ali
, and
A.
Khademhosseini
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
9522
9527
(
2008
).
31.
S.
Wüst
,
R.
Müller
, and
S.
Hofmann
, “
3D Bioprinting of complex channels—Effects of material, orientation, geometry, and cell embedding
,”
J. Biomed. Mater. Res. A
(published online
2014
).
32.
V. K.
Lee
,
D. Y.
Kim
,
H.
Ngo
,
Y.
Lee
,
L.
Seo
,
S.-S.
Yoo
,
P. A.
Vincent
, and
G.
Dai
,
Biomaterials
35
,
8092
8102
(
2014
).
33.
J. A. S.
Neiman
,
R.
Raman
,
V.
Chan
,
M. G.
Rhoads
,
M. S. B.
Raredon
,
J. J.
Velazquez
,
R. L.
Dyer
,
R.
Bashir
,
P. T.
Hammond
, and
L. G.
Griffith
,
Biotechnol. Bioeng.
112
(
4
),
777
787
(
2015
).
34.
J. S.
Miller
,
K. R.
Stevens
,
M. T.
Yang
,
B. M.
Baker
,
D.-H. T.
Nguyen
,
D. M.
Cohen
,
E.
Toro
,
A. A.
Chen
,
P. A.
Galie
,
X.
Yu
,
R.
Chaturvedi
,
S. N.
Bhatia
, and
C. S.
Chen
,
Nat. Mater.
11
,
768
774
(
2012
).
35.
L. M.
Bellan
,
S. P.
Singh
,
P. W.
Henderson
,
T. J.
Porri
,
H. G.
Craighead
, and
J. A.
Spector
,
Soft Matter
5
,
1354
1357
(
2009
).
36.
L. M.
Bellan
,
M.
Pearsall
,
D. M.
Cropek
, and
R.
Langer
,
Adv. Mater.
24
,
5187
5191
(
2012
).
37.
T.
Kokalj
,
Y.
Park
,
M.
Vencelj
,
M.
Jenko
, and
L. P.
Lee
,
Lab Chip
14
,
4329
4333
(
2014
).
38.
S. G.
Darby
,
M. R.
Moore
,
T. A.
Friedlander
,
D. K.
Schaffer
,
R. S.
Reiserer
,
J. P.
Wikswo
, and
K. T.
Seale
,
Lab Chip
10
,
3218
3226
(
2010
).
39.
I. E.
Araci
and
S. R.
Quake
,
Lab Chip
12
,
2803
2806
(
2012
).
40.
D.
Beebe
,
J.
Moore
,
J.
Bauer
,
Q.
Yu
,
R.
Liu
,
C.
Devadoss
, and
B.
Jo
,
Nature
404
,
588
590
(
2000
).
41.
H.
Kortmann
,
L. M.
Blank
, and
A.
Schmid
,
Lab Chip
9
,
1455
1460
(
2009
).
42.
H.
Chen
,
D.
Acharya
,
A.
Gajraj
, and
J.-C.
Meiners
,
Anal. Chem.
75
,
5287
5291
(
2003
).
43.
H.-J.
Kim
,
C.
Son
, and
B.
Ziaie
,
Appl. Phys. Lett.
92
,
011904
(
2008
).
44.
M. A.
Eddings
,
M. A.
Johnson
, and
B. K.
Gale
,
J. Micromech. Microeng.
18
,
067001
(
2008
).
45.
B. L.
Gray
,
D.
Jaeggi
,
N. J.
Mourlas
,
B. P.
van Drieënhuizen
,
K. R.
Williams
,
N. I.
Maluf
, and
G. T. A.
Kovacs
,
Sens. Actuators A
77
,
57
65
(
1999
).
46.
A. M.
Christensen
,
D. A.
Chang-Yen
, and
B. K.
Gale
,
J. Micromech. Microeng.
15
,
928
(
2005
).
47.
B. L.
Gray
,
S. D.
Collins
, and
R. L.
Smith
,
Sens. Actuators A
112
,
18
24
(
2004
).
48.
N. H.
Bings
,
C.
Wang
,
C. D.
Skinner
,
C. L.
Colyer
,
P.
Thibault
, and
D. J.
Harrison
,
Anal. Chem.
71
,
3292
3296
(
1999
).
49.
Y.
Liu
,
D.
Kopelman
,
L.-Q.
Wu
,
K.
Hijji
,
I.
Attar
,
O.
Preiss-Bloom
, and
G. F.
Payne
,
J. Biomed. Mater. Res.
91B
,
5
16
(
2009
).
50.
Y. C.
Choi
,
J. S.
Choi
,
Y. J.
Jung
, and
Y. W.
Cho
,
J. Mater. Chem. B
2
,
201
209
(
2014
).
51.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.-Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
,
Nat. Methods
9
,
676
682
(
2012
).
52.
T. M.
Shazly
,
A. B.
Baker
,
J. R.
Naber
,
A.
Bon
,
K. J.
Van Vliet
, and
E. R.
Edelman
,
J. Biomed. Mater. Res. A
95A
,
1159
1169
(
2010
).
53.
D. G.
Barrett
,
G. G.
Bushnell
, and
P. B.
Messersmith
,
Adv. Healthcare Mater.
2
,
745
755
(
2013
).
54.
W. D.
Spotnitz
,
ISRN Surg.
2014
,
203943
.
55.
See supplementary material at http://dx.doi.org/10.1063/1.4921453 for experimental methods and discussion of findings related to DOPA-Fish glue efficacy in collagen hydrogels as well as effects upon long-term cell viability.
56.
B.
Mizrahi
,
C. F.
Stefanescu
,
C.
Yang
,
M. W.
Lawlor
,
D.
Ko
,
R.
Langer
, and
D. S.
Kohane
,
Acta Biomater.
7
,
3150
3157
(
2011
).

Supplementary Material

You do not currently have access to this content.