The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break.

1.
R. B.
Fair
,
A.
Khlystov
,
T. D.
Tailor
,
V.
Ivanov
,
R. D.
Evans
,
P. B.
Griffin
,
V.
Srinivasan
,
V. K.
Pamula
,
M. G.
Pollack
, and
J.
Zhou
,
IEEE Des. Test Comput.
24
,
10
24
(
2007
).
2.
M. G.
Pollack
,
V. K.
Pamula
,
V.
Srinivasan
, and
A. E.
Eckhardt
,
Expert Rev. Mol. Diagn.
11
,
393
407
(
2011
).
3.
W. C.
Nelson
and
C.-J.
Kim
,
J. Adhes. Sci. Technol.
26
,
1747
1771
(
2012
).
4.
M. J.
Jebrail
,
M. S.
Bartsch
, and
K. D.
Patel
,
Lab Chip
12
,
2452
2463
(
2012
).
5.
M. G.
Pollack
,
A. D.
Shenderov
, and
R. B.
Fair
,
Lab Chip
2
,
96
101
(
2002
).
6.
M. G.
Pollack
,
R. B.
Fair
, and
A. D.
Shenderov
,
Appl. Phys. Lett.
77
,
1725
1726
(
2000
).
7.
O. D.
Velev
,
B. G.
Prevo
, and
K. H.
Bhatt
,
Nature
426
,
515
516
(
2003
).
8.
F.
Mugele
and
J.-C.
Baret
,
J. Phys.: Condens. Matter
17
,
R705
R774
(
2005
).
9.
A. B.
Theberge
,
F.
Courtois
,
Y.
Schaerli
,
M.
Fischlechner
,
C.
Abell
,
F.
Hollfelder
, and
W. T. S.
Huck
,
Angew. Chem. Int. Ed.
49
,
5846
5868
(
2010
).
10.
V.
Srinivasan
,
V. K.
Pamula
, and
R. B.
Fair
,
Lab Chip
4
,
310
315
(
2004
).
11.
D.
Chatterjee
,
H.
Shepherd
, and
R. L.
Garrell
,
Lab Chip
9
,
1219
1229
(
2009
).
12.
D. R.
Link
,
E.
Grasland-Mongrain
,
A.
Duri
,
F.
Sarrazin
,
Z.
Cheng
,
G.
Cristobal
,
M.
Marquez
, and
D. A.
Weitz
,
Angew. Chem. Int. Ed.
45
,
2556
2560
(
2006
).
13.
L.
Landau
and
B.
Levich
,
Acta Phys. Chim. URS
17
,
42
54
(
1942
).
14.
F. P.
Bretherton
,
J. Fluid Mech.
10
,
166
188
(
1961
).
15.
L. Y.
Yeo
and
H.-C.
Chang
,
Phys. Rev. E
73
,
011605
(
2006
).
16.
L. W.
Schwartz
,
H. M.
Princen
, and
A. D.
Kiss
,
J. Fluid Mech.
172
,
259
275
(
1986
).
17.
S. R.
Hodges
,
O. E.
Jensen
, and
J. M.
Rallison
,
J. Fluid Mech.
501
,
279
301
(
2004
).
18.
J.
Ratulowski
and
H.-C.
Chang
,
J. Fluid Mech.
210
,
303
328
(
1990
).
19.
K. J.
Stebe
and
D.
Barthès-Biesel
,
J. Fluid Mech.
286
,
25
48
(
1995
).
20.
K. J.
Stebe
,
S.-Y.
Lin
, and
C.
Maldarelli
,
Phys. Fluids A
3
,
3
20
(
1991
).
21.
C.
Quilliet
and
B.
Berge
,
Europhys. Lett.
60
,
99
105
(
2002
).
22.
A.
Staicu
and
F.
Mugele
,
Phys. Rev. Lett.
97
,
167801
(
2006
).
23.
A.
Sheludko
,
Adv. Colloid Interface Sci.
1
,
391
464
(
1967
).
24.
B.
Derjaguin
and
E.
Obuchov
,
Acta Phys. Chim. URS
5
,
1
(
1936
).
25.
I. B.
Ivanov
and
D. S.
Dimitrov
,
Thin Liquid Films
(
Dekker
,
New York
,
1988
).
26.
R.
Gill
,
M.
Mazhar
,
O.
Félix
, and
G.
Decher
,
Angew. Chem.
122
,
6252
6255
(
2010
).
27.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
London
,
1991
).
28.
H.
Ren
,
R. B.
Fair
,
M. G.
Pollack
, and
E. J.
Shaughnessy
,
Sens. Actuators, B
87
,
201
206
(
2002
).
29.
R.
Malk
,
A.
Rival
,
Y.
Fouillet
, and
L.
Davoust
, in
Proceedings of the 8th International Conference on Nanochannels, Microchannels, and Minichannels
, Montreal, Canada, 1–5 August 2010 (
American Society of Mechanical Engineers
,
New York
,
2010
), pp.
239
248
.
30.
F.
Mugele
,
A.
Staicu
,
R.
Bakker
, and
D.
van den Ende
,
Lab Chip
11
,
2011
2016
(
2011
).
31.
L.
Davoust
,
Y.
Fouillet
,
R.
Malk
, and
J.
Theisen
,
Biomicrofluidics
7
,
044104
(
2013
).
32.
C.-P.
Lee
,
H.-C.
Chen
, and
M.-F.
Lai
,
Biomicrofluidics
6
,
012814
(
2012
).
You do not currently have access to this content.