Microorganisms can effectively generate propulsive force at the microscale where viscous forces overwhelmingly dominate inertia forces; bacteria achieve this task through flagellar motion. When swarming bacteria, cultured on agar plates, are blotted onto the surface of a microfabricated structure, a monolayer of bacteria forms what is termed a “bacterial carpet,” which generates strong flows due to the combined motion of their freely rotating flagella. Furthermore, when the bacterial carpet coated microstructure is released into a low Reynolds number fluidic environment, the propulsive force of the bacterial carpet is able to give the microstructure motility. In our previous investigations, we demonstrated motion control of these bacteria powered microbiorobots (MBRs). Without any external stimuli, MBRs display natural rotational and translational movements on their own; this MBR self-actuation is due to the coordination of flagella. Here, we investigate the flow fields generated by bacterial carpets, and compare this flow to the flow fields observed in the bulk fluid at a series of locations above the bacterial carpet. Using microscale particle image velocimetry, we characterize the flow fields generated from the bacterial carpets of MBRs in an effort to understand their propulsive flow, as well as the resulting pattern of flagella driven self-actuated motion. Comparing the velocities between the bacterial carpets on fixed and untethered MBRs, it was found that flow velocities near the surface of the microstructure were strongest, and at distances far above, the surface flow velocities were much smaller.

1.
E. M.
Purcell
,
Am. J. Phys.
45
,
3
11
(
1977
).
2.
H. C.
Berg
and
R. A.
Anderson
,
Nature
245
,
380
382
(
1973
).
3.
H.
Flores
,
E.
Lobaton
,
S.
Méndez-Diez
,
S.
Tlupova
, and
R.
Cortez
,
Bull. Math. Biol.
67
(
1
),
137
168
(
2005
).
4.
T. R.
Powers
,
Phys. Rev. E
65
(
4
),
040903
(
2002
).
6.
E.
Lauga
and
T. R.
Powers
,
Rep. Prog. Phys.
72
(
9
),
096601
(
2009
).
7.
R.
Maniyeri
,
Y. K.
Suh
,
S.
Kang
, and
M. J.
Kim
,
Comput. Fluids
62
,
13
24
(
2012
).
8.
J.
Higdon
,
J. Fluid Mech.
90
(
04
),
685
711
(
1979
).
9.
N. S.
Ha
and
N. S.
Goo
,
J. Bionic Eng.
7
(
3
),
259
266
(
2010
).
10.
F.-H.
Qin
,
W.-X.
Huang
, and
H. J.
Sung
,
Comput. Fluids
55
,
109
117
(
2012
).
11.
M. J.
Kim
and
K. S.
Breuer
,
Small
4
(
1
),
111
118
(
2008
).
12.
M. J.
Kim
and
K. S.
Breuer
,
J. Fluids Eng.
129
(
3
),
319
324
(
2007
).
13.
E. B.
Steager
,
M. S.
Sakar
,
V.
Kumar
,
G. J.
Pappas
, and
M. J.
Kim
,
J. Micromech. Microeng.
21
(
3
),
035001
(
2011
).
14.
C. W.
Wolgemuth
,
Biophys. J.
95
(
4
),
1564
1574
(
2008
).
15.
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H. H.
Wensink
,
M.
Bär
, and
R. E.
Goldstein
,
Phys. Rev. Lett.
110
(
22
),
228102
(
2013
).
16.
T.
Ishikawa
,
G.
Sekiya
,
Y.
Imai
, and
T.
Yamaguchi
,
Biophys. J.
93
(
6
),
2217
2225
(
2007
).
17.
M.
Sharma
and
S. K.
Anand
,
Curr. Sci.
83
(
6
),
707
714
(
2002
).
18.
H.
Zhang
,
A.
Be'Er
,
R. S.
Smith
,
E.-L.
Florin
, and
H. L.
Swinney
,
Europhys. Lett.
87
(
4
),
48011
(
2009
).
19.
G. M.
Fraser
and
C.
Hughes
,
Curr. Opin. Microbiol.
2
(
6
),
630
635
(
1999
).
20.
J.
Henrichsen
,
Bacteriol. Rev.
36
(
4
),
478
503
(
1972
).
21.
A. A.
Julius
,
M. S.
Sakar
,
E.
Steager
,
U. K.
Cheang
,
M.
Kim
,
V.
Kumar
, and
G. J.
Pappas
, presented at the ICRA,
2009
(unpublished).
22.
E.
Steager
,
C.-B.
Kim
,
J.
Patel
,
S.
Bith
,
C.
Naik
,
L.
Reber
, and
M. J.
Kim
,
Appl. Phys. Lett.
90
(
26
),
263901
(
2007
).
23.
N.
Darnton
,
L.
Turner
,
K.
Breuer
, and
H. C.
Berg
,
Biophys. J.
86
(
3
),
1863
1870
(
2004
).
24.
M.
Ramia
,
D.
Tullock
, and
N.
Phan-Thien
,
Biophys. J.
65
(
2
),
755
778
(
1993
).
25.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
,
Biophys. J.
90
(
2
),
400
412
(
2006
).
26.
M. F.
Copeland
and
D. B.
Weibel
,
Soft Matter
5
(
6
),
1174
1187
(
2009
).
27.
P.
Murray
,
K.
Rosenthal
,
G.
Kobayashi
, and
M.
Pfaller
,
Medical Microbiology
(
Mosby Publishing, St. Louis
,
MO
,
2002
), pp.
266
280
.
28.
S.
Wright
,
B.
Walia
,
J. S.
Parkinson
, and
S.
Khan
,
J. Bacteriol.
188
(
11
),
3962
3971
(
2006
).
29.
B. L.
Taylor
,
J. B.
Miller
,
H. M.
Warrick
, and
D. E.
Koshland
,
J. Bacteriol.
140
(
2
),
567
573
(
1979
).
30.
S. A.
Kandela
,
A. K.
Melconian
, and
S. M.
Bakkour
,
Iraqi J. Laser
3
,
31
35
(
2004
).
31.
R.
Adrian
,
Meas. Sci. Technol.
8
(
12
),
1393
(
1997
).
32.
R. J.
Adrian
and
J.
Westerweel
,
Particle Image Velocimetry
(
Cambridge University Press
,
2010
).
33.
K.
Shinohara
,
Y.
Sugii
,
A.
Aota
,
A.
Hibara
,
M.
Tokeshi
,
T.
Kitamori
, and
K.
Okamoto
,
Meas. Sci. Technol.
15
(
10
),
1965
(
2004
).
34.
C.
Meinhart
,
S.
Wereley
, and
M.
Gray
,
Meas. Sci. Technol.
11
(
6
),
809
(
2000
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4918978 for videos of self-actuated MBR with fluorescent particles, for comparison between tethered and untethered bacterial carpets, and for the frequency of velocity fluctuation using power spectra.
36.
M. G.
Olsen
and
C. J.
Bourdon
,
Meas. Sci. Technol.
18
(
7
),
1963
(
2007
).
37.
L.
Zhang
,
J. A.
Sun
,
Y.
Hao
,
J.
Zhu
,
J.
Chu
,
D.
Wei
, and
Y.
Shen
,
J. Ind. Microbiol. Biotechnol.
37
(
8
),
857
862
(
2010
).
38.
D.
Katz
and
J.
Blake
, in
Proceedings of Swimming and Flying in Nature
(
Plenum
,
1975
), Vol.
1
, pp.
173
184
.
39.
J.
Gray
and
G. J.
Hancock
,
J. Exp. Biol.
32
(
4
),
802
814
(
1955
).

Supplementary Material

You do not currently have access to this content.