Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer—breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage—were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.

1.
J.
Lee
,
H.
Moon
,
J.
Fowler
,
T.
Schoellhammer
, and
C.-J.
Kim
, “
Electrowetting and electrowetting-on-dielectric for microscale liquid handling
,”
Sens. Actuators, A
95
,
259
268
(
2002
).
2.
W. C.
Nelson
and
C.-J. C.
Kim
, “
Droplet actuation by electrowetting-on-dielectric (EWOD): A review
,”
J. Adhes. Sci. Technol.
26
,
1747
1771
(
2012
).
3.
S. K.
Cho
,
H. J.
Moon
, and
C. J.
Kim
, “
Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
,”
J. Microelectromech. Syst.
12
,
70
80
(
2003
).
4.
J.
Lee
,
H.
Moon
,
J.
Fowler
,
K.
Chang-Jin
, and
T.
Schoellhammer
, “
Addressable micro liquid handling by electric control of surface tension
,” in
14th IEEE International Conference on Micro Electro Mechanical Systems, 2001
(IEEE,
2001
), pp.
499
502
.
5.
Y. L.
Hsieh
,
T. Y.
Ho
, and
K.
Chakrabarty
, “
A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
31
,
1656
1669
(
2012
).
6.
T. H.
Lin
and
D. J.
Yao
, “
Applications of EWOD systems for DNA reaction and analysis
,”
J. Adhes. Sci. Technol.
26
,
1789
1804
(
2012
).
7.
P. A. L.
Wijethunga
,
Y. S.
Nanayakkara
,
P.
Kunchala
,
D. W.
Armstrong
, and
H.
Moon
, “
On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique
,”
Anal. Chem.
83
,
1658
1664
(
2011
).
8.
W. C.
Nelson
,
I.
Peng
,
G. A.
Lee
,
J. A.
Loo
,
R. L.
Garrell
, and
C. J.
Kim
, “
Incubated protein reduction and digestion on an electrowetting-on-dielectric digital microfluidic chip for MALDI-MS
,”
Anal. Chem.
82
,
9932
9937
(
2010
).
9.
A. H. C.
Ng
,
K.
Choi
,
R. P.
Luoma
,
J. M.
Robinson
, and
A. R.
Wheeler
, “
Digital microfluidic magnetic separation for particle-based immunoassays
,”
Anal. Chem.
84
,
8805
8812
(
2012
).
10.
L.
Zhu
,
Y. Y.
Feng
,
X. Y.
Ye
,
J. Y.
Feng
,
Y. B.
Wu
, and
Z. Y.
Zhou
, “
An ELISA chip based on an EWOD microfluidic platform
,”
J. Adhes. Sci. Technol.
26
,
2113
2124
(
2012
).
11.
D.
Witters
,
N.
Vergauwe
,
S.
Vermeir
,
F.
Ceyssens
,
S.
Liekens
,
R.
Puers
 et al, “
Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications
,”
Lab Chip
11
,
2790
2794
(
2011
).
12.
B.
Berge
, “
Electrocapillarity and wetting of insulator films by water
,”
C. R. Acad. Sci., Ser. II
317
,
157
163
(
1993
).
13.
D.
Orejon
,
K.
Sefiane
, and
M. E. R.
Shanahan
, “
Young-Lippmann equation revisited for nano-suspensions
,”
Appl. Phys. Lett.
102
,
201601
(
2013
).
14.
H.
Liu
,
S.
Dharmatilleke
,
D. K.
Maurya
, and
A. A. O.
Tay
, “
Dielectric materials for electrowetting-on-dielectric actuation
,”
Microsyst. Technol.
16
,
449
460
(
2010
).
15.
J. K.
Lee
,
K.-W.
Park
,
H.-R.
Kim
, and
S. H.
Kong
, “
Dielectrically stabilized electrowetting on AF1600/Si3N4/TiO2 dielectric composite film
,”
Sens. Actuators, B
160
,
1593
1598
(
2011
).
16.
T.
Xuebin
,
Z.
Zhixian
, and
C. M.
Ming-Cheng
, “
Electrowetting on dielectric experiments using graphene
,”
Nanotechnology
23
,
375501
(
2012
).
17.
S.
Hsien-Hua
,
S.
Tsung-Yao
,
C.
Hwan-You
, and
Y.
Da-Jeng
, “
SNP detection based on temperature-controllable EWOD digital microfluidics system
,” in
Nanotechnology Materials and Devices Conference (NMDC), 2012
(IEEE,
2012
), pp.
92
95
.
18.
G.
Beshkov
,
S.
Lei
,
V.
Lazarova
,
N.
Nedev
, and
S. S.
Georgiev
, “
IR and Raman absorption spectroscopic studies of APCVD, LPCVD and PECVD thin SiN films
,”
Vacuum
69
,
301
305
(
2002
).
19.
A.
Stoffel
,
A.
Kovacs
,
W.
Kronast
, and
B.
Muller
, “
LPCVD against PECVD for micromechanical applications
,”
J. Micromech. Microeng.
6
,
1
13
(
1996
).
20.
U. C.
Yi
and
C. J.
Kim
, “
Characterization of electrowetting actuation on addressable single-side coplanar electrodes
,”
J. Micromech. Microeng.
16
,
2053
2059
(
2006
).
21.
L.
Davoust
,
Y.
Fouillet
,
R.
Malk
, and
J.
Theisen
, “
Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow pattern
,”
Biomicrofluidics
7
,
044104
(
2013
).
22.
S.
Choi
,
Y.
Kwon
,
Y. S.
Choi
,
E. S.
Kim
,
J.
Bae
, and
J.
Lee
, “
Improvement in the breakdown properties of electrowetting using polyelectrolyte ionic solution
,”
Langmuir
29
,
501
509
(
2013
).
23.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
,
1539
1541
(
1992
).
24.
M. G.
Pollack
, “
Electrowetting-based microactuation of droplets for digital microfluidics
,” Ph.D. thesis (
Duke University
,
2001
).
25.
S.
Berry
,
J.
Kedzierski
, and
B.
Abedian
, “
Low voltage electrowetting using thin fluoroploymer films
,”
J. Colloid Interface Sci.
303
,
517
524
(
2006
).
26.
Y. Y.
Lin
,
R. D.
Evans
,
E.
Welch
,
B. N.
Hsu
,
A. C.
Madison
, and
R. B.
Fair
, “
Low voltage electrowetting-on-dielectric platform using multi-layer insulators
,”
Sens. Actuators, B
150
,
465
470
(
2010
).
27.
Y. Y.
Lin
,
E. R. F.
Welch
, and
R. B.
Fair
, “
Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms
,”
Sens. Actuators, B
173
,
338
345
(
2012
).
28.
C.-Y.
Lee
,
J.-Y.
Wang
,
Y.
Chou
,
M. Y.
Liu
,
W.-F.
Su
,
Y.-F.
Chen
 et al, “
Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction
,”
J. Appl. Phys.
107
,
034310
(
2010
).
29.
S.
Srigunapalan
,
I. A.
Eydelnant
,
C. A.
Simmons
, and
A. R.
Wheeler
, “
A digital microfluidic platform for primary cell culture and analysis
,”
Lab Chip
12
,
369
375
(
2012
).
30.
Y.
Xie
,
F.
Wang
,
E. E.
Puscheck
, and
D. A.
Rappolee
, “
Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos
,”
Mol. Reprod. Dev.
74
,
1287
1294
(
2007
).
31.
P.
Hester
,
S.
Clark
,
E.
Walters
,
D.
Beebe
, and
M. B.
Weeler
, “
Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilicate microchannels
,”
Theriogenology
57
,
723
(
2002
).
32.
H.
Sano
,
K.
Matsuura
,
K.
Naruse
, and
H.
Funahashi
, “
Application of a microfluidic sperm sorter to the in-vitro fertilization of porcine oocytes reduced the incidence of polyspermic penetration
,”
Theriogenology
74
,
863
870
(
2010
).
33.
H.-H.
Shen
,
H.-Y.
Tsai
, and
D.-J.
Yao
, “
Single mouse oocyte encapsulated in medium-in-oil microdroplets by using a polydimethylsiloxane microfluidic device
,”
Sens. Mater.
26
,
85
94
(
2014
).
34.
D. G.
Pyne
,
L.
Jun
,
M.
Abdelgawad
, and
S.
Yu
, “
Automated vitrification of mammalian embryos on a digital microfluidic device
,” in
IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014
(IEEE,
2014
), pp.
829
832
.
You do not currently have access to this content.