We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

1.
E.
Colgate
and
H.
Matsumoto
, “
An investigation of electrowetting-based microactuation
,”
J. Vac. Sci. Technol., A
8
,
3625
3633
(
1990
).
2.
B.
Berge
and
J.
Peseux
, “
Variable focal lens controlled by an external voltage: An application of electrowetting
,”
Eur. Phys. J. E
3
,
159
163
(
2000
).
3.
S.
Kuiper
and
B. H. W.
Hendriks
, “
Variable-focus liquid lens for miniature cameras
,”
Appl. Phys. Lett.
85
,
1128
1130
(
2004
).
4.
H.
Kang
and
J.
Kim
, “
EWOD (Electrowetting-on-dielectric) actuated optical micromirror
,” in
19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006)
(
IEEE
,
2006
).
5.
H.
Ren
,
S.
Xu
, and
S.-T.
Wu
, “
Liquid crystal pump
,”
Lab Chip
13
,
100
105
(
2013
).
6.
K.
Mohseni
and
A.
Dolatabadi
, “
An electrowetting microvalve: Numerical simulation
,”
Ann. New York Acad. Sci.
1077
,
415
425
(
2006
).
7.
R. A.
Hayes
and
B. J.
Feenstra
, “
Video-speed electronic paper based on electrowetting
,”
Nature
425
,
383
385
(
2003
).
8.
M.
Vallet
,
B.
Berge
, and
L.
Vovelle
, “
Electrowetting of water and aqueous solutions on Poly(ethylene terephthalate) insulating films
,”
Polymer
37
,
2465
2470
(
1996
).
9.
M.
Vallet
,
M.
Vallade
, and
B.
Berge
, “
Limiting phenomena for the spreading of water on polymer films by electrowetting
,”
Eur. Phys. J. B
11
,
583
591
(
1999
).
10.
A. I.
Drygiannakis
,
A. G.
Papathanasiou
, and
A. G.
Boudouvis
, “
On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in electrowetting
,”
Langmuir
25
,
147
152
(
2009
).
11.
A. G.
Papathanasiou
,
A. T.
Papaioannou
, and
A. G.
Boudouvis
, “
Illuminating the connection between contact angle saturation and dielectric breakdown in electrowetting through leakage current measurements
,”
J. Appl. Phys.
103
,
034901
(
2008
).
12.
S.
Chevalliot
,
S.
Kuiper
, and
J.
Heikenfeld
, “
Experimental validation of the invariance of electrowetting contact angle saturation
,”
J. Adhesion Sci. Technol.
26
,
1909
1930
(
2011
).
13.
H. J. J.
Verheijen
and
M. W. J.
Prins
, “
Reversible electrowetting and trapping of charge: Model and experiments
,”
Langmuir
15
,
6616
6620
(
1999
).
14.
J. T.
Kedzierski
,
R.
Batra
,
S.
Berry
,
I.
Guha
, and
B.
Abedian
, “
Validation of the trapped charge model of electrowetting contact angle saturation on lipid bilayers
,”
J. Appl. Phys.
114
,
024901
024907
(
2013
).
15.
A.
Quinn
,
R.
Sedev
, and
J.
Ralston
, “
Contact angle saturation in electrowetting
,”
J. Phys. Chem. B
109
,
6268
6275
(
2005
).
16.
K. H.
Kang
, “
How electrostatic fields change contact angle in electrowetting
,”
Langmuir
18
,
10318
10322
(
2002
).
17.
J.-L.
Lin
,
G.-B.
Lee
,
Y.-H.
Chang
, and
K.-Y.
Lien
, “
Model description of contact angles in electrowetting on dielectric layers
,”
Langmuir
22
,
484
489
(
2006
).
18.
D.
Klarman
,
D.
Andelman
, and
M.
Urbakh
, “
A model of electrowetting, reversed electrowetting, and contact angle saturation
,”
Langmuir
27
,
6031
6041
(
2011
).
19.
C.-P.
Lee
,
B.-Y.
Fang
, and
Z.-H.
Wei
, “
Influence of electrolytes on contact angles of droplets under electric field
,”
Analyst
138
,
2372
2377
(
2013
).
20.
G.
McHale
,
C. V.
Brown
,
M. I.
Newton
,
G. G.
Wells
, and
N.
Sampara
, “
Dielectrowetting driven spreading of droplets
,”
Phys. Rev. Lett.
107
,
186101
(
2011
).
21.
B.
Shapiro
,
H.
Moon
,
R. L.
Garrell
, and
C.-J.
Kim
, “
Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations
,”
J. Appl. Phys.
93
,
5794
5811
(
2003
).
22.
Y.
Wang
and
Y.-P.
Zhao
, “
Electrowetting on curved surfaces
,”
Soft Matter
8
,
2599
2606
(
2012
).
23.
D.
Duft
,
T.
Achtzehn
,
R.
Muller
,
B. A.
Huber
, and
T.
Leisner
, “
Coulomb fission: Rayleigh jets from levitated microdroplets
,”
Nature
421
,
128
128
(
2003
).
24.
J.
Fernández de la Mora
, “
On the outcome of the coulombic fission of a charged isolated drop
,”
J. Colloid Interface Sci.
178
,
209
218
(
1996
).
25.
A.
Gomez
and
K.
Tang
, “
Charge and fission of droplets in electrostatic sprays
,”
Phys. Fluids
6
,
404
414
(
1994
).
26.
W.
Gu
,
P. E.
Heil
,
H.
Choi
, and
K.
Kim
, “
Comprehensive model for fine Coulomb fission of liquid droplets charged to Rayleigh limit
,”
Appl. Phys. Lett.
91
,
064104
(
2007
).
27.
D. C.
Taflin
,
T. L.
Ward
, and
E. J.
Davis
, “
Electrified droplet fission and the Rayleigh limit
,”
Langmuir
5
,
376
384
(
1989
).
28.
L.
Rayleigh
, “
On the equilibrium of liquid conducting masses charged with electricity
,”
Philos. Mag. Ser.
14
(
87
),
184
186
(
1882
).
29.
F.
Mugele
and
S.
Herminghaus
, “
Electrostatic stabilization of fluid microstructures
,”
Appl. Phys. Lett.
81
,
2303
(
2002
).
30.
M. A.
Fontelos
and
U.
Kindelan
, “
A variational approach to contact angle saturation and contact line instability in static electrowetting
,”
Q. J. Mech. Appl. Math.
62
,
465
480
(
2009
).
31.
M. A.
Fontelos
and
U.
Kindelan
, “
The shape of charged drops over a solid surface and symmetry-breaking instabilities
,”
SIAM J. Appl. Math.
69
,
126
148
(
2008
).
32.
G.
Taylor
, “
Disintegration of water drops in an electric field
,”
Proc. R. Soc. London Ser. A
280
,
383
397
(
1964
).
33.
I. W.
Mcallister
and
G. C.
Crichton
, “
Analysis of the temporal electric fields in lossy dielectric media
,”
IEEE Trans. Electr. Insul.
26
,
513
528
(
1991
).
34.
Quinn
,
A.
,
R.
Sedev
, and
J.
Ralston
, “
Influence of the electrical double layer in electrowetting
,”
J. Phys. Chem. B
107
,
1163
1169
(
2003
).
35.
Q.
Yuan
and
Y.-P.
Zhao
, “
Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity
,”
Phys. Rev. Lett.
104
,
246101
(
2010
).
36.
P. R.
Amestoy
,
I. S.
Duff
, and
J. Y.
L'Excellent
, “
Multifrontal parallel distributed symmetric and unsymmetric solvers
,”
Comput. Methods Appl. Mech. Eng.
184
,
501
520
(
2000
).
37.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice Hall
,
Upper Saddle River, N.J.
,
1999
), Chap. XV, p.
576
.
38.
See supplementary material at http://dx.doi.org/10.1063/1.4907977 for correction functions of charges on cap and base surfaces of the droplet that were obtained by curve fitting of COMSOL data based on EWOD setup parameters taken from Drygiannakis et al.10 and Chevalliot et al.12 as shown in Table I in the main article.

Supplementary Material

You do not currently have access to this content.