Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the “least flow resistance path” principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a “deterministic” manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm2 scale area, as a promising tool to pattern large-scale single cells on specific substrates and facilitate on-chip cellular assay at the single cell level.

1.
N. M.
Toriello
,
E. S.
Douglas
,
N.
Thaitrong
,
S. C.
Hsiao
,
M. B.
Francis
,
C. R.
Bertozzi
, and
R. A.
Mathies
, “
Integrated microfluidic bioprocessor for single-cell gene expression analysis
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
20173
20178
(
2008
).
2.
G.
Poste
,
J.
Tzeng
,
J.
Doll
,
R.
Greig
,
D.
Rieman
, and
I.
Zeidman
, “
Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases
,”
Proc. Natl. Acad. Sci. U.S.A.
79
,
6574
6578
(
1982
).
3.
J. M.
Irish
,
N.
Kotecha
, and
G. P.
Nolan
, “
Mapping normal and cancer cell signalling networks: Towards single-cell proteomics
,”
Nat. Rev. Cancer
6
,
146
155
(
2006
).
4.
T.
Graf
and
M.
Stadtfeld
, “
Heterogeneity of embryonic and adult stem cells
,”
Cell Stem Cell
3
,
480
483
(
2008
).
5.
M. A.
Walling
and
J. R. E.
Shepard
, “
Cellular heterogeneity and live cell arrays
,”
Chem. Soc. Rev.
40
,
4049
4076
(
2011
).
6.
A.
Lawrenz
,
F.
Nason
, and
J. J.
Cooper-White
, “
Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells
,”
Biomicrofluidics
6
,
024112
(
2012
).
7.
Y.
Wang
,
Z. Z.
Chen
, and
Q. L.
Li
, “
Microfluidic techniques for dynamic single-cell analysis
,”
Microchim. Acta
168
,
177
195
(
2010
).
8.
H.
Yin
and
D.
Marshall
, “
Microfluidics for single cell analysis
,”
Curr. Opin. Biotechnol.
23
,
110
119
(
2012
).
9.
V.
Lecault
,
A. K.
White
,
A.
Singhal
, and
C. L.
Hansen
, “
Microfluidic single cell analysis: From promise to practice
,”
Curr. Opin. Chem. Biol.
16
,
381
390
(
2012
).
10.
R.
Pethig
, “
Review article-dielectrophoresis: Status of the theory, technology, and applications
,”
Biomicrofluidics
4
,
022811
(
2010
).
11.
P.
Benhal
,
J. G.
Chase
,
P.
Gaynor
,
B.
Oback
, and
W. H.
Wang
, “
AC electric field induced dipole-based on-chip 3d cell rotation
,”
Lab Chip
14
,
2717
2727
(
2014
).
12.
X.
Lu
,
W. H.
Huang
,
Z. L.
Wang
, and
J. K.
Cheng
, “
Recent developments in single-cell analysis
,”
Anal. Chim. Acta
510
,
127
138
(
2004
).
13.
D. D.
Carlo
,
L. Y.
Wu
, and
L. P.
Lee
, “
Dynamic single cell culture array
,”
Lab Chip
6
,
1445
1449
(
2006
).
14.
X. H.
Gao
,
X.
Zhang
,
H.
Xu
,
B. P.
Zhou
,
W. J.
Wen
, and
J. H.
Qin
, “
Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress
,”
Biomicrofluidics
8
,
052008
(
2014
).
15.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
, “
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
,”
Biomicrofluidics
7
,
21501
(
2013
).
16.
L.
Lin
,
Y. S.
Chu
,
J. P.
Thiery
,
C. T.
Lim
, and
I.
Rodriguez
, “
Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns
,”
Lab Chip
13
,
714
721
(
2013
).
17.
J. P.
Frimat
,
M.
Becker
,
Y. Y.
Chiang
,
U.
Marggraf
,
D.
Janasek
,
J. G.
Hengstler
,
J.
Franzke
, and
J.
West
, “
A microfluidic array with cellular valving for single cell co-culture
,”
Lab Chip
11
,
231
237
(
2011
).
18.
K.
Chung
,
C. A.
Rivet
,
M. L.
Kemp
, and
H.
Lu
, “
Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array
,”
Anal. Chem.
83
,
7044
7052
(
2011
).
19.
R. S.
Martin
,
P. D.
Root
, and
D. M.
Spence
, “
Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment
,”
Analyst
131
,
1197
1206
(
2006
).
20.
M.
Tanyeri
,
E. M.
Johnson-Chavarria
, and
C. M.
Schroeder
, “
Hydrodynamic trap for single particles and cells
,”
Appl. Phys. Lett.
96
,
224101
(
2010
).
21.
P. R.
Start
,
S. D.
Hudson
,
E. K.
Hobbie
, and
K. B.
Migler
, “
Breakup of carbon nanotube flocs in microfluidic traps
,”
J. Colloid Interface Sci.
297
,
631
636
(
2006
).
22.
C. M.
Lin
,
Y. S.
Lai
,
H. P.
Liu
,
C. Y.
Chen
, and
A. M.
Wo
, “
Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications
,”
Anal. Chem.
80
,
8937
8945
(
2008
).
23.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
,
22206
(
2011
).
24.
J.
Yang
,
C. W.
Li
, and
J.
Yang
, “
Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device
,”
Anal. Chem.
74
,
3991
4001
(
2002
).
25.
D. D.
Carlo
,
N.
Aghdam
, and
L. P.
Lee
, “
Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays
,”
Anal. Chem.
78
,
4925
4930
(
2006
).
26.
D. R.
Gossett
,
W. M.
Weaver
,
N. S.
Ahmed
, and
D. D.
Carlo
, “
Sequential array cytometry: multi-parameter imaging with a single fluorescent channel
,”
Ann. Biomed. Eng.
39
,
1328
1334
(
2011
).
27.
K.
Zhang
,
C. K.
Chouc
,
X. F.
Xia
,
M. C.
Hung
, and
L. D.
Qin
, “
Block-cell-printing for live single-cell printing
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
2948
2953
(
2014
).
28.
W. H.
Tan
and
S.
Takeuchi
, “
A trap-and-release integrated microfluidic system for dynamic microarray applications
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
1146
1151
(
2007
).
29.
J.
Akagi
,
K.
Khoshmanesh
,
B.
Evans
,
C. J.
Hall
,
K. E.
Crosier
,
J. M.
Cooper
,
P. S.
Crosier
, and
D.
Wlodkowic
, “
Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos
,”
PLoS One
7
,
e36630
(
2012
).
30.
S.
Kobel
,
A.
Valero
,
J.
Latt
,
P.
Renaud
, and
M.
Lutolf
, “
Optimization of microfluidic single cell trapping for long-term on-chip culture
,”
Lab Chip
10
,
857
863
(
2010
).
31.
J.
Judy
,
D.
Maynes
, and
B. W.
Webb
, “
Characterization of frictional pressure drop for liquid flows through microchannels
,”
Int. J. Heat Mass Transfer
45
,
3477
3489
(
2002
).
32.
D.
Liu
and
S. V.
Garimella
, “
Investigation of liquid flow in microchannels
,”
J. Thermophys. Heat Transfer
18
,
65
72
(
2004
).
33.
M. J.
Kohl
,
S. I.
Abdel-Khalik
,
S. M.
Jeter
, and
D. L.
Sadowski
, “
An experimental investigation of microchannel flow with internal pressure measurements
,”
Int. J. Heat Mass Transfer
48
,
1518
1533
(
2005
).
34.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
,
2369
2376
(
2012
).
35.
Y.
Chisti
, “
Hydrodynamic damage to animal cells
,”
Crit. Rev. Biotechnol.
21
,
67
110
(
2001
).
36.
O. W.
Merten
, “
Cell detachment
,”
Encyclopedia of Industrial Biotechnology
(
John Wiley & Sons, Inc.
,
2010
), pp.
1
22
.
You do not currently have access to this content.