This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio and droplet-to-medium viscosity ratio . Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet with the droplet size and viscosity . A simple theoretical model is developed to obtain closed form expressions for droplet mobility and . The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility and induced hydrodynamic resistance . Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio and viscosity ratio , which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance is related to the cell concentration and apparent viscosity of the cells.
Skip Nav Destination
Article navigation
September 2014
Research Article|
October 06 2014
Hydrodynamic resistance and mobility of deformable objects in microfluidic channels
P. Sajeesh;
P. Sajeesh
Department of Mechanical Engineering,
Indian Institute of Technology Madras
, Chennai-600036, India
and Department of Biotechnology, Indian Institute of Technology Madras
, Chennai-600036, India
Search for other works by this author on:
M. Doble;
M. Doble
Department of Mechanical Engineering,
Indian Institute of Technology Madras
, Chennai-600036, India
and Department of Biotechnology, Indian Institute of Technology Madras
, Chennai-600036, India
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: ashis@iitm.ac.in
Biomicrofluidics 8, 054112 (2014)
Article history
Received:
May 28 2014
Accepted:
September 25 2014
Citation
P. Sajeesh, M. Doble, A. K. Sen; Hydrodynamic resistance and mobility of deformable objects in microfluidic channels. Biomicrofluidics 1 September 2014; 8 (5): 054112. https://doi.org/10.1063/1.4897332
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00