This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ϕ and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ϕ and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells.

1.
A.
Manz
,
D.
Harrison
,
E. M. J.
Verpoorte
,
J. C.
Fettinger
,
A.
Paulus
,
H.
Ludi
, and
H. M.
Widmer
,
J. Chromatogr.
593
,
253
(
1992
).
2.
G. M.
Whitesides
and
A. D.
Stroock
,
Phys. Today
54
(
6
),
42
(
2001
).
3.
M.
Toner
and
D.
Irimia
,
Annu. Rev. Biomed. Eng.
7
,
77
(
2005
).
4.
P.
Bhardwaj
,
P.
Bagdi
, and
A. K.
Sen
,
Lab Chip
11
(
23
),
4012
(
2011
).
5.
G.
Goet
,
T.
Baier
,
S.
Hardt
, and
A. K.
Sen
,
Biomicrofluidics
7
(
4
),
044103
(
2013
).
6.
P.
Sajeesh
and
A. K.
Sen
,
Microfluid. Nanofluid.
17
(1),
1
(
2013
).
7.
J.
Voldman
,
M. L.
Gray
, and
M. A.
Schmidt
,
Annu. Rev. Biomed. Eng.
1
,
401
(
1999
).
8.
A. K.
Sen
,
J.
Darabi
, and
D. R.
Knapp
,
Sens. Actuators, B
137
(
2
),
789
(
2008
).
9.
A. K.
Sen
,
T.
Harvey
, and
J.
Clausen
,
Biomed. Microdevices
13
(
4
),
705
(
2011
).
10.
S.
Suresh
,
J.
Spatz
,
J. P.
Mills
,
A.
Micoulet
,
M.
Dao
,
C. T.
Lim
,
M.
Beil
, and
T.
Seufferlein
,
Acta Biomater.
1
(
1
),
15
(
2005
).
11.
A.
Vaziri
and
A.
Gopinath
,
Nat. Mater.
7
,
15
(
2008
).
12.
H. A.
Cranston
,
C. W.
Boylan
,
G. L.
Caroll
,
S. P.
Sutera
,
J. R.
Williamson
,
I. Y.
Gluzman
, and
D. J.
Krogstad
,
Science
223
(
4634
),
400
(
1984
).
13.
M. A. C.
Ayala
and
R.
Karnik
, “
Hydrodynamic resistance and sorting of deformable particles in microfluidic circuits
,” Ph.D. dissertation (
MIT University
,
2013
).
14.
M. S.
Raafat
,
M. C.
Ayala
, and
R.
Karnik
, in
Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences
,
The Netherlands
, 3–7 October
2010
.
15.
B. J.
Adzima
and
S. S.
Velankar
,
J. Micromech. Microeng.
16
,
1504
(
2006
).
16.
C. N.
Baroud
,
F.
Gallaire
, and
R.
Dangla
,
Lab Chip
10
,
2032
(
2010
).
17.
S. A.
Vanapalli
,
A. G.
Banpurkar
,
D. V.
Ende
,
M. H. G.
Duits
, and
F.
Mugele
,
Lab Chip
9
,
982
(
2009
).
18.
W.
Engl
,
M.
Roche
,
A.
Colin
,
P.
Panizza
, and
A.
Ajdari
,
Phys. Rev. Lett.
95
,
208304
(
2005
).
19.
V.
Labrot
,
M.
Schindler
,
P.
Guillot
,
A.
Colin
, and
M.
Joanicot
,
Biomicrofluidics
3
,
012804
(
2009
).
20.
Z.
He
,
Z.
Dagan
, and
C.
Maldarell
,
J. Fluid Mech.
222
,
1
(
1991
).
21.
M. J.
Fuerstman
,
A.
Lai
,
M. E.
Thurlow
,
S. S.
Shevkoplyas
,
H. A.
Stone
, and
G. M.
Whiteside
,
Lab Chip
7
,
1479
(
2007
).
22.
D. A.
Sessoms
,
M.
Belloul
,
W.
Engl
,
W. M.
Roche
,
L.
Courbin
, and
P.
Panizza
,
Phys. Rev. E
80
,
016317
(
2009
).
23.
H.
Brenner
,
Ind. Eng. Chem. Fundam.
10
,
537
(
1971
).
24.
G.
Hetsroni
,
S.
Haber
, and
E.
Wacholder
,
J. Fluid Mech.
41
,
689
(
1970
).
25.
M. J.
Martinez
and
K. S.
Udell
,
J. Fluid Mech.
210
,
565
(
1990
).
26.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Prentice-Hall
,
1965
).
27.
A.
Biral
and
A.
Zanella
, in
Proceedings of the 3rd IEEE International Workshop on Molecular and Nanoscale Communications (MoNaCom)
(
2013
), p.
798
.
28.
G. L.
Goldsmith
and
S. G.
Mason
,
J. Colloid Sci.
18
,
237
(
1963
).
29.
G.
Segre
and
A.
Silberberg
,
J. Fluid Mech.
14
,
136
(
1962
).
30.
M. L.
Henle
and
A. J.
Levine
,
Phys. Fluids
21
,
033106
(
2009
).
31.
P.
Wilding
,
J.
Pfahier
,
H. H.
Bau
,
J. N.
Zemel
, and
L. J.
Kricka
,
Clin. Chem.
40
(
1
),
43
(
1994
).
32.
R. G.
Holdich
,
Fundamentals of Particle Technology
(
Midland Information Technology & Publishing
,
United Kingdom
,
2002
).
33.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
,
J. Comput. Phys.
100
,
335
(
1992
).
34.
P.
Vigneaux
, “
Droplets in microchannels with level set method
,” in
European Conference on Computational Fluid Dynamics ECCOMAS CFD, TU Delft
,
The Netherlands
(
2006
).
35.
A. M.
Leshansky
and
L. M.
Pismen
,
Phys. Fluids
21
,
023303
(
2009
).
36.
Y.
Li
,
M.
Jain
, and
K.
Nandakumar
, “
Numerical study of droplet formation inside a microfluidic flow-focusing device
,” in
Excerpt from the Proceedings of the COMSOL Conference
,
Boston
(
2012
).
37.
D. B.
Troy
and
P.
Beringer
,
Remington: The Science and Practice of Pharmacy
, 22nd ed. (
Lippincott Williams & Wilkins Publisher
,
USA
,
2005
).
38.
R.
Dreyfus
,
P.
Tabeling
, and
H.
Willaime
,
Phys. Rev. Lett.
90
(
14
),
144505
(
2003
).
39.
Q.
Guo
, “
Surfactants in nonpolar oils: Agents of electric charging and nano-gel templates
,” Ph.D. thesis (
Georgia Institute of Technology
,
USA
,
2012
).
40.
L. W.
Bergman
, “Growth and maintenance of yeast,” in
Methods in Molecular Biology, Vol. 177, Two Hybrid Systems
(
Humana Press
,
2001
), p. 9.
41.
V.
Nandakumar
,
V.
Geetha
,
S.
Chittaranjan
, and
M.
Doble
,
Biomed. Pharmacother.
67
(
5
),
431
(
2013
).
42.
G.
Venkatachalam
,
V.
Nandakumar
,
G.
Suresh
, and
M.
Doble
,
RSC Adv.
4
(
22
),
11393
(
2014
).
43.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D. Di
Carlo
,
Lab Chip
11
,
912
(
2011
).
44.
D. Di
Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M. T.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
(
2007
).
45.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
,
Appl. Phys. Lett.
82
(
3
),
364
(
2003
).
46.
T.
Cubaud
and
T. G.
Mason
,
Phys. Fluids
20
,
053302
(
2008
).
47.
B. P.
Ho
and
L. G.
Leal
,
J. Fluid Mech.
71
(
2
),
361
(
1975
).
48.
E.
Lac
and
J. D.
Sherwood
,
J. Fluid Mech.
640
,
27
(
2009
).
49.
W.
Lan
,
S.
Li
,
Y.
Wang
, and
G.
Luo
,
Ind. Eng. Chem. Res.
53
,
4913
(
2014
).
50.
W. L.
Olbricht
,
Annu. Rev. Fluid Mech.
28
,
187
(
1996
).
51.
A. E.
Scheidegger
,
The Physics of Flow Through Porous Media
, 3rd ed. (
University of Toronto Press
,
New York
,
1974
).
52.
D.
Malsch
,
M.
Kielpinski
,
R.
Merthan
,
J.
Albert
,
G.
Mayer
,
J. M.
Kohler
,
H. S.
Sube
,
M.
Stahl
, and
T.
Henkel
,
Chem. Eng. J.
135S
,
166
(
2008
).
53.
V.
Steijn
,
M. T.
Kreutzer
, and
C. R.
Kleijn
,
Chem. Eng. Sci.
62
,
7505
(
2007
).
54.
G. A.
Grob
,
V.
Thyagarajan
,
M.
Kielpinski
,
T.
Henkel
, and
J. M.
Kohler
,
Microfluid. Nanofluid.
5
(
2
),
281
(
2008
).
55.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
United Kingdom
,
2008
).
56.
A.
Einstein
,
Ann. Phys.
324
,
289
(
1906
).
57.
M.
Poletto
and
D. D.
Joseph
,
J. Rheol.
39
(
2
),
323
(
1995
).
58.
C.
Yeh
and
E. C.
Eckstein
,
Biophys. J.
66
,
1706
(
1994
).
59.
S. M.
Mijailovich
,
M.
Kojic
,
M.
Zivkovic
,
B.
Fabry
, and
J. J.
Fredberg
,
J. Appl. Physiol.
93
(
4
),
1429
(
2002
).
60.
S. H.
Cho
,
H. G.
Choi
, and
J. Y.
Yoo
,
Int. J. Multiphase Flow
31
,
435
(
2005
).
You do not currently have access to this content.