The characterization of cell viability is a challenging task in applied biotechnology, as no clear definition of cell death exists. Cell death is accompanied with a change in the electrical properties of the membrane as well as the cell interior. Therefore, changes in the physiology of cells can be characterized by monitoring of their dielectric properties. We correlated the dielectric properties of industrially used mammalian cells, sedimented over interdigitated microelectrodes, to the AC signal response across the chip. The voltage waveforms across the electrodes were processed to obtain the circuit impedance, which was used to quantify the changes in cell viability. We observed an initial decrease in impedance, after which it remained nearly constant. The results were compared with data from the dye exclusion viability test, the cell specific oxygen uptake rate, and the online viable cell density data from capacitance probes. The microelectrode technique was found to be sensitive to physiological changes taking place inside the cells before their membrane integrity is compromised. Such accurate determination of the metabolic status during this initial period, which turned out to be less well captured in the dye exclusion tests, may be essential for several biotechnology operations.

1.
S. M.
Schwartz
and
M. R.
Bennett
,
Am. J. Pathol.
147
,
229
(
1995
).
2.
S. L.
Fink
and
B. T.
Cookson
,
Infect. Immun.
73
,
1907
(
2005
).
3.
P.
Patel
and
G. H.
Markx
,
Enzyme Microb. Technol.
43
,
463
(
2008
).
4.
W.
Strober
, “
Trypan blue exclusion test of cell viability
,” in
Current Protocols in Immunology
, edited by
J. E.
Coligan
and
A. M.
Kruisbeek
(
Wiley-Greene
,
New York
,
1994
), pp.
A.3.3
A.3.4
.
5.
L.
Black
and
M. C.
Berenbaum
,
Exp. Cell Res.
35
,
9
(
1964
).
6.
B. K.
Bhuyan
,
B. E.
Loughman
,
T. J.
Fraser
, and
K. J.
Day
,
Exp. Cell Res.
97
,
275
(
1976
).
7.
J. M.
Hoskins
,
G. G.
Meynell
, and
F. K.
Sanders
,
Exp. Cell Res.
11
,
297
(
1956
).
8.
J. P.
Kaltenbach
,
M. H.
Kaltenbach
, and
W. B.
Lyons
,
Exp. Cell Res.
15
,
112
(
1958
).
9.
H. J.
Phillips
and
J. E.
Terryberry
,
Exp. Cell Res.
13
,
341
(
1957
).
10.
R.
Schrek
,
Am. J. Cancer
28
,
389
(
1936
).
11.
L. A.
Flanagan
,
J.
Lu
,
L.
Wang
,
S. A.
Marchenko
,
N. L.
Jeon
,
A. P.
Lee
, and
E. S.
Monuki
,
Stem Cells
26
,
656
(
2008
).
12.
P. R.
Gascoyne
,
J.
Noshari
,
T. J.
Anderson
, and
F. F.
Becker
,
Electrophoresis
30
,
1388
(
2009
).
13.
L.
Yang
and
R.
Bashir
,
Biotechnol. Adv.
26
,
135
(
2008
).
14.
H.
Li
and
R.
Bashir
,
Sens. Actuators, B
86
,
215
(
2002
).
15.
J.
Auerswald
and
H. F.
Knapp
,
Microelectron. Eng.
67–68
,
879
(
2003
).
16.
Z.
Gagnon
,
J.
Mazur
, and
H. C.
Chang
,
Lab Chip
10
,
718
(
2010
).
17.
Y.
Huang
,
R.
Holzel
,
R.
Pethig
, and
X. B.
Wang
,
Phys. Med. Biol.
37
,
1499
(
1992
).
18.
S.
Gupta
,
P. K.
Kilpatrick
,
E.
Melvin
, and
O. D.
Velev
,
Lab Chip
12
,
4279
(
2012
).
19.
F. H.
Labeed
,
H. M.
Coley
,
H.
Thomas
, and
M. P.
Hughes
,
Biophys. J.
85
,
2028
(
2003
).
20.
F. H.
Labeed
,
H. M.
Coley
, and
M. P.
Hughes
,
Biochim. Biophys. Acta.
1760
,
922
(
2006
).
21.
P. M.
Patel
,
A.
Bhat
, and
G. H.
Markx
,
Enzyme Microb. Technol.
43
,
523
(
2008
).
22.
G. H.
Markx
,
M. S.
Talary
, and
R.
Pethig
,
J. Biotechnol.
32
,
29
(
1994
).
23.
K.
Ratanachoo
,
P. R. C.
Gascoyne
, and
M.
Ruchirawat
,
Biochim. Biophys. Acta.
1564
,
449
(
2002
).
24.
C.
Chung
,
M.
Waterfall
,
S.
Pells
,
A.
Menachery
,
S.
Smith
, and
R.
Pethig
,
J. Electr. Bioimp.
2
,
64
(
2011
).
25.
M.
Castellarnau
,
A.
Errachid
,
C.
Madrid
,
A.
Juarez
, and
J.
Samitier
,
Biophys. J.
91
,
3937
(
2006
).
26.
N.
Demierre
,
T.
Braschler
,
R.
Muller
, and
P.
Renaud
,
Sens. Actuators, B
132
,
388
(
2008
).
27.
R.
Pethig
,
Crit. Rev. Biotechnol.
16
,
331
(
1996
).
28.
J.
Suehiro
,
R.
Yatsunami
,
R.
Hamada
, and
M.
Hara
,
J. Phys. D: Appl. Phys.
32
,
2814
(
1999
).
29.
J.
Suehiro
,
R.
Hamada
,
D.
Noutomi
,
M.
Shutou
, and
M.
Hara
,
J. Electrostat.
57
,
157
(
2003
).
30.
H. N.
Unni
,
D.
Hartono
,
L. Y. L.
Yung
,
M. M. L.
Ng
,
H. P.
Lee
, and
B. C.
Khoo
,
Biomicrofluidics
6
,
012805
(
2012
).
31.
E. M.
Melvin
,
B. R.
Moore
,
K. H.
Gilchrist
,
S.
Grego
, and
O. D.
Velev
,
Biomicrofluidics
5
,
034113
(
2011
).
32.
C. F.
Opel
,
J.
Li
, and
A.
Amanullah
,
Biotechnol. Prog.
26
,
1187
(
2010
).
33.
J.
Gimsa
,
P.
Marszalek
,
U.
Loewe
, and
T. Y.
Tsong
,
Biophys. J.
60
,
749
(
1991
).
34.
M.
Dabros
,
D.
Dennewald
,
D. J.
Currie
,
M. H.
Lee
,
R. W.
Todd
,
I. W.
Marison
, and
U.
von Stockar
,
Bioprocess Biosyst. Eng.
32
,
161
(
2009
).
35.
R.
Pethig
and
M. S.
Talary
,
IET Nanobiotechnol.
1
,
2
(
2007
).
36.
M.
Thakur
,
K.
Mergel
,
A.
Weng
,
S.
Frech
,
R.
Gilabert-Oriol
,
D.
Bachran
,
M. F.
Melzig
, and
H.
Fuchs
,
Biosens. Bioelectron.
35
,
503
(
2012
).
37.
X.
Wang
,
F. F.
Becker
, and
P. R.
Gascoyne
,
Biochim. Biophys. Acta
1564
,
412
(
2002
).
38.
M.
Nikolic-Jaric
,
T.
Cabel
,
E.
Salimi
,
A.
Bhide
,
K.
Braasch
,
M.
Butler
,
G. E.
Bridges
, and
D. J.
Thomson
,
Biomicrofluidics
7
,
024101
(
2013
).
39.
K.
Braasch
,
M.
Nikolic-Jaric
,
T.
Cabel
,
E.
Salimi
,
G. E.
Bridges
,
D. J.
Thomson
, and
M.
Butler
,
Biotechnol. Bioeng.
110
,
2902
(
2013
).
40.
L. M.
Barnes
,
C. M.
Bentley
, and
A. J.
Dickson
,
Cytotechnology
32
,
109
(
2000
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.4895564 for details on patterned electrode fabrication, calculation of sedimentation time of a cell on chip, calculation of cell density needed to obtain a monolayer on chip, viability estimation based on the cell movement on chip due to dielectrophoresis, procedure for collecting capacitance probe data used to calculate viable cell density, a table comparing cell viability characterization using capacitance probes and on-chip impedance measurement and plots showing variability in Cedex data and impedance trend as a function of cell density.
42.
J. F. M.
Hughes
,
C. D.
Bortner
,
G. D.
Purdy
, and
J. A.
Cidlowski
,
J. Biol. Chem.
272
,
30567
(
1997
).
43.
I.
Vermes
,
C.
Haanen
,
H.
Steffens-Nakken
, and
C.
Reutelingsperger
,
J. Immunol. Methods
184
,
39
(
1995
).
44.
J.
Li
,
W.
Gu
,
D. G.
Edmondson
,
C.
Lu
,
N.
Vijayasankaran
,
B.
Figueroa
,
D.
Stevenson
,
T.
Ryll
, and
F.
Li
,
Biotechnol. Bioeng.
109
,
1685
(
2012
).
46.
K.
Asami
,
J. Phys. D: Appl. Phys.
39
,
4656
(
2006
).

Supplementary Material

You do not currently have access to this content.