Understanding the mechanism behind cancer metastasis is a major challenge in cancer biology. Several in vitro models have been developed to mimic a cancer microenvironment by engineering cancer–endothelial cell (EC) and cancer-stromal cell interactions. It has been challenging to realistically mimic angiogenesis, intravasation, and extravasation using macro-scale approaches but recent progress in microfluidics technology has begun to yield promising results. We present a metastasis chip that produce microvessels, where EC and stromal cells can be patterned in close proximity to tumor cells. The vessels are formed following a natural morphogenic process and have smooth boundaries with proper cell-cell junctions. The engineered microvessels are perfusable and have well-defined openings toward inlet and outlet channels. The ability to introduce cancer cells into different locations bordering to the microvessel wall allowed generation and maintenance of appropriate spatial gradients of growth factors and attractants. Cancer angiogenesis and its inhibition by anti-vascular endothelial growth factor (bevacizumab) treatment were successfully reproduced in the metastasis chip. Cancer intravasation and its modulation by treatment of tumor necrosis factor-α were also modeled. Compared to other models, the unique design of the metastasis chip that engineers a clear EC-cancer interface allows precise imaging and quantification of angiogenic response as well as tumor cell trans-endothelial migration. The metastasis chip presented here has potential applications in the investigation of fundamental cancer biology as well as in drug screening.

1.
G.
Bergers
and
L. E.
Benjamin
,
Nat. Rev. Cancer
3
(
6
),
401
410
(
2003
).
2.
P.
Carmeliet
and
R. K.
Jain
,
Nature
407
(
6801
),
249
257
(
2000
).
3.
E.
Sahai
,
Nat. Rev. Cancer
7
(
10
),
737
749
(
2007
).
4.
M.
Tsujii
,
S.
Kawano
,
S.
Tsuji
,
H.
Sawaoka
,
M.
Hori
, and
R. N.
DuBois
,
Cell
93
(
5
),
705
716
(
1998
).
5.
A.
Abdollahi
,
D. W.
Griggs
,
H.
Zieher
,
A.
Roth
,
K. E.
Lipson
,
R.
Saffrich
,
H.-J.
Gröne
,
D. E.
Hallahan
,
R. A.
Reisfeld
, and
J.
Debus
,
Clin. Cancer Res.
11
(
17
),
6270
6279
(
2005
).
6.
T.
Kusama
,
M.
Mukai
,
M.
Tatsuta
,
H.
Nakamura
, and
M.
Inoue
,
Int. J. Oncol.
29
(
1
),
217
223
(
2006
).
7.
T.-H.
Lee
,
H. K.
Avraham
,
S.
Jiang
, and
S.
Avraham
,
J. Biol. Chem.
278
(
7
),
5277
5284
(
2003
).
8.
F.
Jin
,
U.
Brockmeier
,
F.
Otterbach
, and
E.
Metzen
,
Mol. Cancer Res.
10
(
8
),
1021
1031
(
2012
).
9.
R. H.
Kramer
and
G. L.
Nicolson
,
Proc. Natl. Acad. Sci. U.S.A.
76
(
11
),
5704
5708
(
1979
).
10.
A.
Roetger
,
A.
Merschjann
,
T.
Dittmar
,
C.
Jackisch
,
A.
Barnekow
, and
B.
Brandt
,
Am. J. Pathol.
153
(
6
),
1797
1806
(
1998
).
11.
B. A.
Zabel
,
S.
Lewén
,
R. D.
Berahovich
,
J. C.
Jaén
, and
T. J.
Schall
,
Mol. Cancer
10
,
73
(
2011
).
12.
S.
Chung
,
R.
Sudo
,
V.
Vickerman
,
I. K.
Zervantonakis
, and
R. D.
Kamm
,
Ann. Biomed. Eng.
38
(
3
),
1164
1177
(
2010
).
13.
H.
Lee
,
M.
Chung
, and
N. L.
Jeon
,
MRS Bull.
39
(
01
),
51
59
(
2014
).
14.
S.
Kim
,
H.
Lee
,
M.
Chung
, and
N. L.
Jeon
,
Lab Chip
13
(
8
),
1489
1500
(
2013
).
15.
I. K.
Zervantonakis
,
S. K.
Hughes-Alford
,
J. L.
Charest
,
J. S.
Condeelis
,
F. B.
Gertler
, and
R. D.
Kamm
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
34
),
13515
13520
(
2012
).
16.
J. S.
Jeon
,
I. K.
Zervantonakis
,
S.
Chung
,
R. D.
Kamm
, and
J. L.
Charest
,
PloS One
8
(
2
),
e56910
(
2013
).
17.
M. B.
Chen
,
J. A.
Whisler
,
J. S.
Jeon
, and
R. D.
Kamm
,
Integr. Biol.
5
(
10
),
1262
1271
(
2013
).
18.
H.
Lee
,
S.
Kim
,
M.
Chung
,
J. H.
Kim
, and
N. L.
Jeon
,
Microvasc. Res.
91
,
90
98
(
2014
).
19.
J. H.
Yeon
,
H. R.
Ryu
,
M.
Chung
,
Q. P.
Hu
, and
N. L.
Jeon
,
Lab Chip
12
(
16
),
2815
2822
(
2012
).
20.
C. P.
Huang
,
J.
Lu
,
H.
Seon
,
A. P.
Lee
,
L. A.
Flanagan
,
H.-Y.
Kim
,
A. J.
Putnam
, and
N. L.
Jeon
,
Lab Chip
9
(
12
),
1740
1748
(
2009
).
21.
J.
Flament
,
F.
Geffroy
,
C.
Medina
,
C.
Robic
,
J. F.
Mayer
,
S.
Mériaux
,
J.
Valette
,
P.
Robert
,
M.
Port
, and
D. Le
Bihan
,
Magn. Reson. Med.
69
(
1
),
179
187
(
2013
).
22.
F.
Yuan
,
Y.
Chen
,
M.
Dellian
,
N.
Safabakhsh
,
N.
Ferrara
, and
R. K.
Jain
,
Proc. Natl. Acad. Sci. U.S.A.
93
(
25
),
14765
14770
(
1996
).
23.
M. H.
Wu
,
E.
Ustinova
, and
H. J.
Granger
,
J. Physiol.
532
(
3
),
785
791
(
2001
).
24.
P. W.
Kazakoff
,
T. R.
McGuire
,
E. B.
Hoie
,
M.
Cano
, and
P. L.
Iversen
,
In Vitro Cell. Dev. Biol. Anim.
31
(
11
),
846
852
(
1995
).
25.
Y.
Zheng
,
J.
Chen
,
M.
Craven
,
N. W.
Choi
,
S.
Totorica
,
A.
Diaz-Santana
,
P.
Kermani
,
B.
Hempstead
,
C.
Fischbach-Teschl
, and
J. A.
López
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
24
),
9342
9347
(
2012
).
26.
K. R.
Pechman
,
D. L.
Donohoe
,
D. P.
Bedekar
,
S. N.
Kurpad
,
R. G.
Hoffmann
, and
K. M.
Schmainda
,
J. Neuro-Oncol.
105
(
2
),
233
239
(
2011
).
27.
Q. D.
Wu
,
J. H.
Wang
,
C.
Condron
,
D.
Bouchier-Hayes
, and
H. P.
Redmond
,
Am. J. Physiol. Cell Physiol.
280
(
4
),
C814
C822
(
2001
).
28.
K.
Zen
,
D.-Q.
Liu
,
Y.-L.
Guo
,
C.
Wang
,
J.
Shan
,
M.
Fang
,
C.-Y.
Zhang
, and
Y.
Liu
,
PloS One
3
(
3
),
e1826
(
2008
).
29.
J.
Brett
,
H.
Gerlach
,
P.
Nawroth
,
S.
Steinberg
,
G.
Godman
, and
D.
Stern
,
J. Exp. Med.
169
(
6
),
1977
1991
(
1989
).
30.
C. J.
Horvath
,
T. J.
Ferro
,
G.
Jesmok
, and
A. B.
Malik
,
Proc. Natl. Acad. Sci. U.S.A.
85
(
23
),
9219
9223
(
1988
).
31.
A.
Burke-Gaffeyy
and
A. K.
Keenan
,
Immunopharmacology
25
(
1
),
1
9
(
1993
).
32.
M.
Liang
,
P.
Zhang
, and
J.
Fu
,
Cancer Lett.
258
(
1
),
31
37
(
2007
).
33.
K.
Jöhrer
,
K.
Janke
,
J.
Krugmann
,
M.
Fiegl
, and
R.
Greil
,
Clin. Cancer Res.
10
(
6
),
1901
1910
(
2004
).
34.
L. L.
Bischel
,
E. W.
Young
,
B. R.
Mader
, and
D. J.
Beebe
,
Biomaterials
34
(
5
),
1471
1477
(
2013
).
35.
Y.-H.
Li
and
C.
Zhu
,
Clin. Exp. Metastasis
17
(
5
),
423
429
(
1999
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4894595 for entire schematic drawing and detailed dimensions of the chip.

Supplementary Material

You do not currently have access to this content.