Using limited lipid molecules held by two water-core/oil-shell encapsulated droplets, we formed an optically observable bilayer lipid membrane (BLM) across a microfabricated aperture whose dimension was precisely determined and easily scalable. For the minute volume of a 0.1 μL oil (n-decane) shell encapsulating a 1.5 μL water core droplet, only 0.2 to 2.8 nmol or 0.17 to 2.4 μg lipid was required. Microscopes and electrophysiological measurements were performed on the parallel-plate device with three major steps demonstrated: (1) manipulating self-assembled lipid monolayers at the water-oil interface of the encapsulated droplets by electrowetting-on-dielectric (EWOD), (2) forming a BLM by bringing two lipid monolayers towards the aperture and thinning down the oil film between them by Young-Laplace pressure, and (3) incorporating membrane-bound nanopores, α-hemolysin (αHL), on the BLM. This study shows the influence of the lipid concentration to the interfacial tension and EWOD. Plateau-Gibbs border and black membrane area of the BLM were optically observed, while trans-membrane electrophysiological signals were electrically recorded from a pair of Ag/AgCl electrodes.

1.
H. T.
Tien
and
A. L.
Ottova
,
J. Membr. Sci.
189
,
83
117
(
2001
).
2.
A.
Ottova
and
H. T.
Tien
,
Bioelectrochemistry
56
,
171
173
(
2002
).
3.
H. J.
Ko
and
T. H.
Park
,
Biol. Chem.
387
,
59
68
(
2006
).
4.
I. R.
Booth
,
M. D.
Edwards
, and
S.
Miller
,
Biochemistry
42
,
10045
10053
(
2003
).
5.
H. A.
Fishman
,
D. R.
Greenwald
, and
R. N.
Zare
,
Annu. Rev. Biophys. Biomol. Struct.
27
,
165
198
(
1998
).
6.
E.
Neher
,
B.
Sakmann
, and
J. H.
Steinbach
,
Pflugers Arch.
375
,
219
228
(
1978
).
7.
A. L.
Hopkins
and
C. R.
Groom
,
Nat. Rev. Drug Discov.
1
,
727
730
(
2002
).
8.
A. G.
Macdonald
and
P. C.
Wraight
,
Prog. Biophys. Mol. Biol.
63
,
1
29
(
1995
).
9.
C.-H.
Huang
,
P.-Y.
Hsiao
,
F.-G.
Tseng
,
S.-K.
Fan
,
C.-C.
Fu
, and
R.-L.
Pan
,
Langmuir
27
,
11930
11942
(
2011
).
10.
P.
Lauger
,
Angew. Chem. Int. Ed. Engl.
24
,
905
923
(
1985
).
11.
P.
Mueller
,
D. O.
Rudin
,
H. T.
Tien
, and
W. C.
Wescott
,
Nature
194
,
979
980
(
1962
).
12.
M.
Montal
and
P.
Mueller
,
Proc. Natl. Acad. Sci. USA
69
,
3561
3566
(
1972
).
13.
M.
Mayer
,
J. K.
Kriebel
,
M. T.
Tosteson
, and
G. M.
Whitesides
,
Biophys. J.
85
,
2684
2695
(
2003
).
14.
J. E. M.
McGeoch
,
M. W.
McGeoch
,
D. J. D.
Carter
,
R. F.
Shuman
, and
G.
Guidotti
,
Med. Biol. Eng. Comput.
38
,
113
119
(
2000
).
15.
R.
Pantoja
,
D.
Sigg
,
R.
Blunck
,
F.
Bezanilla
, and
J. R.
Heath
,
Biophys. J.
81
,
2389
2394
(
2001
).
16.
M. C.
Peterman
,
J. M.
Ziebarth
,
O.
Braha
,
H.
Bayley
,
H. A.
Fishman
, and
D. M.
Bloom
,
Biomed. Microdevices
4
,
231
236
(
2002
).
17.
M.
Goryll
,
S.
Wilk
,
G. M.
Laws
,
T.
Thornton
,
S.
Goodnick
,
M.
Saraniti
,
J.
Tang
, and
R. S.
Eisenberg
,
Superlattices Microstruct.
34
,
451
457
(
2003
).
18.
H.
Suzuki
and
S.
Takeuchi
,
Anal. Bioanal. Chem.
391
,
2695
2702
(
2008
).
19.
H.
Suzuki
,
K.
Tabata
,
Y.
Kato-Yamada
,
H.
Noji
, and
S.
Takeuchi
,
Lab Chip
4
,
502
505
(
2004
).
20.
H.
Suzuki
,
K. V.
Tabata
,
H.
Noji
, and
S.
Takeuchi
,
Langmuir
22
,
1937
1942
(
2006
).
21.
H.
Suzuki
,
K. V.
Tabata
,
H.
Noji
, and
S.
Takeuchi
,
Biosens. Bioelectron.
22
,
1111
1115
(
2007
).
22.
M. E.
Sandison
,
M.
Zagnoni
, and
H.
Morgan
,
Langmuir
23
,
8277
8284
(
2007
).
23.
B. Le
Pioufle
,
H.
Suzuki
,
K. V.
Tabata
,
H.
Noji
, and
S.
Takeuchi
,
Anal. Chem.
80
,
328
332
(
2008
).
24.
M.
Zagnoni
,
M. E.
Sandison
, and
H.
Morgan
,
Biosens. Bioelectron.
24
,
1235
1240
(
2009
).
25.
T.
Osaki
,
H.
Suzuki
,
B. L.
Pioufle
, and
S.
Takeuch
,
Anal. Chem.
81
,
9866
9870
(
2009
).
26.
K.
Funakoshi
,
H.
Suzuki
, and
S.
Takeuchi
,
Anal. Chem.
78
,
8169
8174
(
2006
).
27.
N.
Malmstadt
,
M. A.
Nash
,
R. F.
Ournell
, and
J. J.
Schmidt
,
Nano Lett.
6
,
1961
1965
(
2006
).
28.
L. M.
Tsofina
,
E. A.
Liberman
, and
A. V.
Babakov
,
Nature
212
,
681
683
(
1966
).
29.
M.
Zagnoni
,
M. E.
Sandison
,
P.
Marius
, and
H.
Morgan
,
Anal. Bioannal. Chem.
393
,
1601
1605
(
2009
).
30.
J. L.
Poulos
,
T.-J.
Jeon
,
R.
Damoiseaux
,
E. J.
Gillespie
,
K. A.
Bradley
, and
J. J.
Schmidt
,
Biosens. Bioelectron.
24
,
1806
1810
(
2009
).
31.
S.
Leptihn
,
O. K.
Castell
,
B.
Cronin
,
E.-H.
Lee
,
L. C. M.
Gross
,
D. P.
Marshall
,
J. R.
Thompson
,
M.
Holden
, and
M. I.
Wallace
,
Nat. Protoc.
8
,
1048
1057
(
2013
).
32.
H.
Bayley
,
B.
Cronin
,
A.
Heron
,
M. A.
Holden
,
W. L.
Hwang
,
R.
Syeda
,
J.
Thompson
, and
M.
Wallace
,
Mol. Biosyst.
4
,
1191
1208
(
2008
).
33.
M. A.
Holden
,
D.
Needham
, and
H.
Bayley
,
J. Am. Chem. Soc.
129
,
8650
8655
(
2007
).
34.
W. L.
Hwang
,
M. A.
Holden
,
S.
White
, and
H.
Bayley
,
J. Am. Chem. Soc.
129
,
11854
11864
(
2007
).
35.
W. L.
Hwang
,
M.
Chen
,
B.
Cronin
,
M. A.
Holden
, and
H.
Bayley
,
J. Am. Chem. Soc.
130
,
5878
5879
(
2008
).
36.
G.
Maglia
,
A. J.
Heron
,
W. L.
Hwang
,
A.
Holden
,
E.
Mikhailova
,
Q.
Li
,
S.
Cheley
, and
H.
Bayley
,
Nat. Nanotechnol.
4
,
437
440
(
2009
).
37.
S.
Aghdaei
,
M. E.
Sandison
,
M.
Zagnoni
,
N. G.
Green
, and
H.
Morgan
,
Lab Chip
8
,
1617
1620
(
2008
).
38.
J. L.
Poulos
,
W. C.
Nelson
,
T.-J.
Jeon
,
C.-J.
Kim
, and
J. J.
Schmidt
,
Appl. Phys. Lett.
95
,
013706
(
2009
).
39.
S.-K.
Fan
,
Y.-W.
Hsu
, and
C.-H.
Chen
,
Lab Chip
11
,
2500
2508
(
2011
).
40.
B.
Berge
,
C. R. Acad. Sci. Paris Ser II
317
,
157
163
(
1993
).
41.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
(
Wiley-Interscience
,
1997
).
42.
M. J.
Rosen
,
Surfactants and Interfacial Phenomena
(
Wiley-Interscience
,
2004
).
43.
44.
A. L.
Plant
,
M.
Gueguetchken
, and
W.
Yap
,
Biophys. J.
67
,
1126
1133
(
1994
).
45.
W. R.
Redwood
,
F. R.
Pfeiffer
,
J. A.
Weisbach
, and
T. E.
Thompson
,
Biochim. Biophys. Acta
233
,
1
6
(
1971
).
46.
L.
Song
,
M. R.
Hobaugh
,
C.
Shustak
,
S.
Cheley
,
H.
Bayley
, and
J. E.
Gouauxt
,
Science
274
,
1859
1866
(
1996
).
47.
G.
Menestrina
,
J. Membrane Biol.
90
,
177
190
(
1986
).
You do not currently have access to this content.