Red blood cells (RBCs) possess a unique capacity for undergoing cellular deformation to navigate across various human microcirculation vessels, enabling them to pass through capillaries that are smaller than their diameter and to carry out their role as gas carriers between blood and tissues. Since there is growing evidence that red blood cell deformability is impaired in some pathological conditions, measurement of RBC deformability has been the focus of numerous studies over the past decades. Nevertheless, reports on healthy and pathological RBCs are currently limited and, in many cases, are not expressed in terms of well-defined cell membrane parameters such as elasticity and viscosity. Hence, it is often difficult to integrate these results into the basic understanding of RBC behaviour, as well as into clinical applications. The aim of this review is to summarize currently available reports on RBC deformability and to highlight its association with various human diseases such as hereditary disorders (e.g., spherocytosis, elliptocytosis, ovalocytosis, and stomatocytosis), metabolic disorders (e.g., diabetes, hypercholesterolemia, obesity), adenosine triphosphate-induced membrane changes, oxidative stress, and paroxysmal nocturnal hemoglobinuria. Microfluidic techniques have been identified as the key to develop state-of-the-art dynamic experimental models for elucidating the significance of RBC membrane alterations in pathological conditions and the role that such alterations play in the microvasculature flow dynamics.

1.
C.
Wang
and
A.
Popel
, “
Effect of red blood cell shape on oxygen transport in capillaries
,”
Math. Biosci.
116
(
1
),
89
110
(
1993
).
2.
S.
Guido
and
G.
Tomaiuolo
, “
Microconfined flow behavior of red blood cells in vitro
,”
C. R. Phys.
10
,
751
763
(
2009
).
3.
P. C.
Johnson
, “
Overview of the microcirculation
,”
Microcirculation
(
Academic Press
,
2008
).
4.
Y.
Zheng
,
J.
Nguyen
,
Y.
Wei
, and
Y.
Sun
, “
Recent advances in microfluidic techniques for single-cell biophysical characterization
,”
Lab Chip
13
(
13
),
2464
2483
(
2013
).
5.
S.
Shattil
,
B.
Furie
,
H.
Cohen
,
L.
Silverstein
,
P.
Glave
, and
M.
Strauss
,
Hematology: Basic Principles and Practice
(
Churchill Livingstone
,
Philadelphia
,
2000
).
6.
S. M.
Hosseini
and
J. J.
Feng
, “
How malaria parasites reduce the deformability of infected red blood cells
,”
Biophys. J.
103
(
1
),
1
10
(
2012
).
7.
T.
Wu
and
J. J.
Feng
, “
Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage
,”
Biomicrofluidics
7
(
4
),
044115
(
2013
).
8.
G. A.
Barabino
,
M. O.
Platt
, and
D. K.
Kaul
, “
Sickle cell biomechanics
,”
Annu. Rev. Biomed. Eng.
12
,
345
367
(
2010
).
9.
A. V.
Buys
,
M.-J.
Van Rooy
,
P.
Soma
,
D.
Van Papendorp
,
B.
Lipinski
, and
E.
Pretorius
, “
Changes in red blood cell membrane structure in type 2 diabetes: A scanning electron and atomic force microscopy study
,”
Cardiovasc. Diabetol.
12
,
25
(
2013
).
10.
L. Da
Costa
,
J.
Galimand
,
O.
Fenneteau
, and
N.
Mohandas
, “
Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders
,”
Blood Rev.
27
(
4
),
167
178
(
2013
).
11.
A.
Vayá
,
L.
Rivera
,
R. de la
Espriella
 et al., “
Red blood cell distribution width and erythrocyte deformability in patients with acute myocardial infarction
,”
Clin. Hemorheol. Microcirc.
(published online 2013).
12.
B.
Smith
, “
Abnormal erythrocyte fragmentation and membrane deformability in paroxysmal nocturnal hemoglobinuria
,”
Am. J. Hematol.
20
(
4
),
337
343
(
1985
).
13.
G.
McHedlishvili
and
N.
Maeda
, “
Blood flow structure related to red cell flow: Determinant of blood fluidity in narrow microvessels
,”
Jpn. J. Physiol.
51
(
1
),
19
30
(
2001
).
14.
N.
Mohandas
and
P. G.
Gallagher
, “
Red cell membrane: Past, present, and future
,”
Blood
112
(
10
),
3939
3948
(
2008
).
15.
Y. C.
Fung
,
Biomechanics: Mechanical Properties of Living Tissues
(
Springer-Verlag
,
New York
,
1993
).
16.
M.
Diez-Silva
,
M.
Dao
,
J.
Han
,
C.-T.
Lim
, and
S.
Suresh
, “
Shape and biomechanical characteristics of human red blood cells in health and disease
,”
Mrs. Bull.
35
(
5
),
382
388
(
2010
).
17.
S.
Suresh
,
J.
Spatz
,
J. P.
Mills
,
A.
Micoulet
 et al., “
Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria
,”
Acta Biomater.
1
,
15
30
(
2005
).
18.
G. Y. H.
Lee
and
C. T.
Lim
, “
Biomechanics approaches to studying human diseases
,”
Trends Biotechnol.
25
(
3
),
111
118
(
2007
).
19.
D. C.
Rees
,
T. N.
Williams
, and
M. T.
Gladwin
, “
Sickle-cell disease
,”
Lancet
376
(
9757
),
2018
2031
(
2010
).
20.
A. M.
Dondorp
,
P. A.
Kager
,
J.
Vreeken
, and
N. J.
White
, “
Abnormal blood flow and red blood cell deformability in severe malaria
,”
Parasitol. Today
16
(
6
),
228
232
(
2000
).
21.
S.
Suresh
, “
Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships
,”
J. Mater. Res.
21
(
8
),
1871
1877
(
2006
).
22.
P. B.
Canham
and
A. C.
Burton
, “
Distribution of size and shape in populations of normal human red cells
,”
Circ. Res.
22
(
3
),
405
422
(
1968
).
23.
J.
Chasis
and
S.
Shohet
, “
Red cell biochemical anatomy and membrane properties
,”
Annu. Rev. Physiol.
49
,
237
248
(
1987
).
24.
E.
Pretorius
, “
The adaptability of red blood cells
,”
Cardiovasc. Diabetol.
12
,
63
(
2013
).
25.
M.
Girasole
,
G.
Pompeo
,
A.
Cricenti
 et al., “
Roughness of the plasma membrane as an independent morphological parameter to study RBCs: A quantitative atomic force microscopy investigation,”
Biochim. Biophys. Acta, Biomembr.
1768
(
5
),
1268
1276
(
2007
).
26.
M.
Girasole
,
S.
Dinarelli
, and
G.
Boumis
, “
Structure and function in native and pathological erythrocytes: A quantitative view from the nanoscale
,”
Micron
43
(
12
),
1273
1286
(
2012
).
27.
J.
Bester
,
A. V.
Buys
,
B.
Lipinski
,
D. B.
Kell
, and
E.
Pretorius
, “
High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease
,”
Front. Aging Neurosci.
5
,
88
(
2013
).
28.
S.
Chien
, “
Principles and techniques for assessing erythrocyte deformability
,” in
Red Cell Rheology
, edited by
M.
Bessis
,
S.
Shohet
, and
N.
Mohandas
(
Springer
Berlin Heidelberg
,
1978
), pp.
71
99
.
29.
P. L.
LaCelle
, “
Alteration of membrane deformability in hemolytic anemias
,”
Semin. Hematol.
7
(
4
),
355
371
(
1970
).
30.
H. J.
Meiselman
, “
Morphological determinants of red cell deformability
,”
Scand. J. Clin. Lab. Invest.
41
,
27
34
(
1981
).
31.
N.
Mohandas
,
M. R.
Clark
,
M. S.
Jacobs
, and
S. B.
Shohet
, “
Analysis of factors regulating erythrocyte deformability
,”
J. Clin. Invest.
66
(
3
),
563
573
(
1980
).
32.
E. A.
Evans
,
R.
Waugh
, and
L.
Melnik
, “
Elastic area compressibility modulus of red cell membrane
,”
Biophys. J.
16
(
6
),
585
595
(
1976
).
33.
E. A.
Evans
, “
Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests
,”
Biophys. J.
43
(
1
),
27
30
(
1983
).
34.
R.
Hochmuth
and
R.
Waugh
, “
Erythrocyte membrane elasticity and viscosity
,”
Annu. Rev. Physiol.
49
,
209
219
(
1987
).
35.
G.
Tomaiuolo
and
S.
Guido
, “
Start-up shape dynamics of red blood cells in microcapillary flow
,”
Microvasc. Res.
82
(
1
),
35
41
(
2011
).
36.
R.
Hochmuth
,
P.
Worthy
, and
E.
Evans
, “
Red cell extensional recovery and the determination of membrane viscosity
,”
Biophys. J.
26
(
1
),
101
114
(
1979
).
37.
G.
Bazzoni
and
M.
Rasia
, “
Effects of an amphipathic drug on the rheological properties of the cell membrane
,”
Blood Cells, Mol., Dis.
24
(
4
),
552
559
(
1998
).
38.
J. L.
Maciaszek
,
B.
Andemariam
, and
G.
Lykotrafitis
, “
Microelasticity of red blood cells in sickle cell disease
,”
J. Strain Anal. Eng. Des.
46
(
5
),
368
379
(
2011
).
39.
I.
Dulinska
,
M.
Targosz
,
W.
Strojny
 et al., “
Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,”
J. Biochem. Biophys. Methods
66
(
1–3
),
1
11
(
2006
).
40.
R.
Skalak
,
A.
Tozeren
,
R. P.
Zarda
, and
S.
Chien
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
(
3
),
245
264
(
1973
).
41.
L.
Dintenfass
, “
Internal viscosity of the red cell and a blood viscosity equation
,”
Nature
219
,
956
958
(
1969
).
42.
M.
Bessis
,
N.
Mohandas
, and
C.
Feo
, “
Automated ektacytometry: A new method of measuring red cell deformability and red cell indices
,”
Blood Cells
6
(
3
),
315
327
(
1979
).
43.
S.
Shin
,
Y. H.
Ku
,
M. S.
Park
,
S. Y.
Moon
,
J. H.
Jang
, and
J. S.
Suh
, “
Laser-diffraction slit rheometer to measure red blood cell deformability
,”
Rev. Sci. Instrum.
75
(
2
),
559
561
(
2004
).
44.
S.
Sutera
,
V.
Seshadri
,
P.
Croce
, and
R.
Hochmuth
, “
Capillary blood flow. II. Deformable model cells in tube flow
,”
Microvasc. Res.
2
(
4
),
420
433
(
1970
).
45.
S. P.
Sutera
,
R. A.
Gardner
,
C. W.
Boylan
 et al., “
Age-related changes in deformability of human erythrocytes,”
Blood.
65
(
2
),
275
282
(
1985
).
46.
H.
Schmid-Schönbein
,
J. V.
Gosen
,
L.
Heinich
,
H. J.
Klose
, and
E.
Volger
, “
A counter-rotating ‘rheoscope chamber’ for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry
,”
Microvasc. Res.
6
(
3
),
366
376
(
1973
).
47.
T.
Cynober
,
N.
Mohandas
, and
G.
Tchernia
, “
Red cell abnormalities in hereditary spherocytosis: Relevance to diagnosis and understanding of the variable expression of clinical severity
,”
J. Lab. Clin. Med.
128
(
3
),
259
269
(
1996
).
48.
O. K.
Baskurt
,
M. R.
Hardeman
,
M.
Uyuklu
,
P.
Ulker
,
M.
Cengiz
,
N.
Nemeth
,
S.
Shin
,
T.
Alexy
, and
H. J.
Meiselman
, “
Parameterization of red blood cell elongation index – Shear stress curves obtained by ektacytometry
,”
Scand. J. Clin. Lab. Invest.
69
(
7
),
777
788
(
2009
).
49.
E.
Evans
, “
New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells
,”
Biophys. J.
13
(
9
),
941
954
(
1973
).
50.
K. G.
Engstrom
and
H. J.
Meiselman
, “
Analysis of red blood cell membrane area and volume regulation using micropipette aspiration and perfusion
,”
Biorheology
32
,
115
116
(
1995
).
51.
R. M.
Hochmuth
, “
Micropipette aspiration of living cells
,”
J. Biomech.
33
,
15
22
(
2000
).
52.
S.
Hénon
,
G.
Lenormand
,
A.
Richert
, and
F.
Gallet
, “
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers
,”
Biophys. J.
76
(
2
),
1145
1151
(
1999
).
53.
J.
Mills
,
L.
Qie
,
M.
Dao
,
C.
Lim
, and
S.
Suresh
, “
Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers
,”
Mech. Chem. Biosyst.
1
(
3
),
169
180
(
2004
).
54.
S.
Suresh
, “
Biomechanics and biophysics of cancer cells
,”
Acta Mater.
55
(
12
),
3989
4014
(
2007
).
55.
A.
De Luca
,
G.
Rusciano
,
R.
Ciancia
 et al., “
Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers
,”
Opt Express.
16
(
11
),
7943
7957
(
2008
).
56.
H.
Zhang
and
K. K.
Liu
, “
Optical tweezers for single cells
,”
J. R. Soc. Interface
5
(
24
),
671
690
(
2008
).
57.
M. M.
Brandão
,
A.
Fontes
,
M. L.
Barjas-Castro
,
L. C.
Barbosa
,
F. F.
Costa
,
C. L.
Cesar
, and
S. T. O.
Saad
, “
Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease
,”
Eur. J. Haematol.
70
(
4
),
207–211
(
2003
).
58.
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
, “
Mechanics of the human red blood cell deformed by optical tweezers
,”
J. Mech. Phys. Solids
51
(
11–12
),
2259
2280
(
2003
).
59.
Y.-Z.
Yoon
,
H.
Hong
,
A.
Brown
 et al., “
Flickering analysis of erythrocyte mechanical properties: Dependence on oxygenation level, cell shape, and hydration level
,”
Biophys. J.
97
(
6
),
1606
1615
(
2009
).
60.
F.
Brochard
and
J. F.
Lennon
, “
Frequency spectrum of the flicker phenomenon in erythrocytes
,”
J. Physique.
36
(
11
),
1035
1047
(
1975
).
61.
A.
Zilker
,
M.
Ziegler
, and
E.
Sackmann
, “
Spectral analysis of erythrocyte flickering in the 0.3-4- μm−1 regime by microinterferometry combined with fast image processing
,”
Phys. Rev. A
46
(
12
),
7998
8001
(
1992
).
62.
G.
Popescu
,
T.
Ikeda
,
K.
Goda
 et al., “
Optical measurement of cell membrane tension
,”
Phys. Rev. Lett.
97
(
21
),
218101
(
2006
).
63.
J.
Evans
,
W.
Gratzer
,
N.
Mohandas
,
K.
Parker
, and
J.
Sleep
, “
Fluctuations of the red blood cell membrane: Relation to mechanical properties and lack of ATP dependence
,”
Biophys. J.
94
(
10
),
4134
4144
(
2008
).
64.
T. G.
Kuznetsova
,
M. N.
Starodubtseva
,
N. I.
Yegorenkov
,
S. A.
Chizhik
, and
R. I.
Zhdanov
, “
Atomic force microscopy probing of cell elasticity
,”
Micron.
38
(
8
),
824
833
(
2007
).
65.
G.
Tomaiuolo
,
M.
Barra
,
V.
Preziosi
,
A.
Cassinese
,
B.
Rotoli
, and
S.
Guido
, “
Microfluidics analysis of red blood cell membrane viscoelasticity
,”
Lab Chip.
11
(
3
),
449
454
(
2011
).
66.
M.
Abkarian
,
M.
Faivre
,
R.
Horton
,
K.
Smistrup
,
C.
Best-Popescu
, and
H.
Stone
, “
Cellular-scale hydrodynamics
,”
Biomed. Mater.
3
(
3
),
034011
(
2008
).
67.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
, “
Deformation of red blood cells using acoustic radiation forces
,”
Biomicrofluidics
8
(
3
),
034109
(
2014
).
68.
A. W.
Jay
, “
Geometry of the human erythrocyte. I. Effect of albumin on cell geometry
,”
Biophys J.
15
(
3
),
205
222
(
1975
).
69.
K. E.
Bremmell
,
A.
Evans
, and
C. A.
Prestidge
, “
Deformation and nano-rheology of red blood cells: An AFM investigation
,”
Colloids Surfaces B.
50
(
1
),
43
48
(
2006
).
70.
Y.
Wu
,
Y.
Hu
,
J.
Cai
 et al., “
Time-dependent surface adhesive force and morphology of RBC measured by AFM,”
Micron.
40
(
3
),
359
364
(
2009
).
71.
Y.
Park
,
C. A.
Best
,
T.
Auth
 et al., “
Metabolic remodeling of the human red blood cell membrane
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
4
),
1289
1294
(
2010
).
72.
J.
Li
,
G.
Lykotrafitis
,
M.
Dao
, and
S.
Suresh
, “
Cytoskeletal dynamics of human erythrocyte
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
12
),
4937
4942
(
2007
).
73.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
, “
The present and future role of microfluidics in biomedical research
,”
Nature
507
(
7491
),
181
189
(
2014
).
74.
H. W.
Hou
,
H. Y.
Gan
,
A. A. S.
Bhagat
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
, “
A microfluidics approach towards high-throughput pathogen removal from blood using margination
,”
Biomicrofluidics
6
(
2
),
024115
(
2012
).
75.
Y.
Zheng
,
J.
Chen
,
T.
Cui
,
N.
Shehata
,
C.
Wang
, and
Y.
Sun
, “
Characterization of red blood cell deformability change during blood storage
,”
Lab Chip
14
(
3
),
577
583
(
2014
).
76.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
(
7101
),
368
373
(
2006
).
77.
M. M.
Gong
,
B. D.
Macdonald
,
T. Vu
Nguyen
,
K.
Van Nguyen
, and
D.
Sinton
, “
Field tested milliliter-scale blood filtration device for point-of-care applications
,”
Biomicrofluidics
7
(
4
),
44111
(
2013
).
78.
J. M.
Sherwood
,
J.
Dusting
,
E.
Kaliviotis
, and
S.
Balabani
, “
The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel
,”
Biomicrofluidics
6
(
2
),
024119
(
2012
).
79.
G.
Tomaiuolo
,
V.
Preziosi
,
M.
Simeone
 et al., “
A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro
,”
Ann. Ist. Super Sanita.
43
(
2
),
186
192
(
2007
).
80.
G.
Tomaiuolo
,
M.
Simeone
,
V.
Martinelli
,
B.
Rotoli
, and
S.
Guido
, “
Red blood cell deformability in microconfined shear flow
,”
Soft Matter.
5
,
3736
3740
(
2009
).
81.
G.
Tomaiuolo
,
D.
Rossi
,
S.
Caserta
,
M.
Cesarelli
, and
S.
Guido
, “
Comparison of two flow-based imaging methods to measure individual red blood cell area and volume
,”
Cytometry, Part A
81
(
12
),
1040
1047
(
2012
).
82.
G.
Tomaiuolo
,
L.
Lanotte
,
G.
Ghigliotti
,
C.
Misbah
, and
S.
Guido
, “
Red blood cell clustering in Poiseuille microcapillary flow
,”
Phys. Fluids.
24
(
5
),
051903
051908
(
2012
).
83.
K.
Tsukada
,
E.
Sekizuka
,
C.
Oshio
, and
H.
Minamitani
, “
Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system
,”
Microvasc. Res.
61
(
3
),
231
239
(
2001
).
84.
L.
Lanotte
,
G.
Tomaiuolo
,
C.
Misbah
,
L.
Bureau
, and
S.
Guido
, “
Red blood cell dynamics in polymer brush-coated microcapillaries: A model of endothelial glycocalyx in vitro
,”
Biomicrofluidics
8
(
1
),
014104
(
2014
).
85.
E.
Du
,
S.
Ha
,
M.
Diez-Silva
,
M.
Dao
,
S.
Suresh
, and
A. P.
Chandrakasan
, “
Electric impedance microflow cytometry for characterization of cell disease states
,”
Lab Chip
13
(
19
),
3903
3909
(
2013
).
86.
I.
Doh
,
W. C.
Lee
,
Y.-H.
Cho
,
A. P.
Pisano
, and
F. A.
Kuypers
, “
Deformation measurement of individual cells in large populations using a single-cell microchamber array chip
,”
Appl. Phys. Lett.
100
(
17
),
173702
(
2012
).
87.
W. C.
Lee
,
S.
Rigante
,
A. P.
Pisano
, and
F. A.
Kuypers
, “
Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations
,”
Lab Chip.
10
(
21
),
2952
2958
(
2010
).
88.
S.-H.
Liao
,
C.-Y.
Chang
, and
H.-C.
Chang
, “
A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood
,”
Biomicrofluidics.
7
(
2
),
024110
(
2013
).
89.
S.
Shevkoplyas
,
S.
Gifford
,
T.
Yoshida
, and
M.
Bitensky
, “
Prototype of an in vitro model of the microcirculation
,”
Microvasc. Res.
65
(
2
),
132
136
(
2003
).
90.
M.
Montagnana
,
G.
Cervellin
,
T.
Meschi
, and
G.
Lippi
, “
The role of red blood cell distribution width in cardiovascular and thrombotic disorders
,”
Clin. Chem. Lab. Med.
50
,
635
(
2012
).
91.
N.
Sutton
,
M. C.
Tracey
,
I. D.
Johnston
,
R. S.
Greenaway
, and
M. W.
Rampling
, “
A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries
,”
Microvasc. Res.
53
(
3
),
272
281
(
1997
).
92.
E.
Schonbrun
,
R.
Malka
,
G.
Caprio
,
D.
Schaak
, and
J. M.
Higgins
, “
Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume
,”
Cytometry, Part A.
85
(
4
),
332
338
(
2014
).
93.
Y.-Z.
Yoon
,
J.
Kotar
,
G.
Yoon
, and
P.
Cicuta
, “
The nonlinear mechanical response of the red blood cell
,”
Phys. Biol.
5
(
3
),
036007
(
2008
).
94.
Y. Z.
Yoon
,
J.
Kotar
,
A. T.
Brown
, and
P.
Cicuta
, “
Red blood cell dynamics: From spontaneous fluctuations to non-linear response
,”
Soft Matter.
7
(
5
),
2042
2051
(
2011
).
95.
R. E.
Waugh
,
M.
Narla
,
C. W.
Jackson
,
T. J.
Mueller
,
T.
Suzuki
, and
G. L.
Dale
, “
Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age
,”
Blood
79
(
5
),
1351
1358
(
1992
).
96.
O.
Linderkamp
,
P. Y.
Wu
, and
H. J.
Meiselman
, “
Geometry of neonatal and adult red blood cells
,”
Pediatr. Res.
17
(
4
),
250
253
(
1983
).
97.
O.
Linderkamp
,
E.
Friederichs
, and
H. J.
Meiselman
, “
Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes
,”
Pediatr. Res.
34
(
5
),
688
693
(
1993
).
98.
O.
Linderkamp
and
H. J.
Meiselman
, “
Geometric, osmotic, and membrane mechanical properties of density- separated human red cells
,”
Blood
59
(
6
),
1121
1127
(
1982
).
99.
G. B.
Nash
and
H. J.
Meiselman
, “
Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging
,”
Biophys J.
43
(
1
),
63
73
(
1983
).
100.
E.
Evans
and
Y.
Fung
, “
Improved measurements of the erythrocyte geometry
,”
Microvasc. Res.
4
(
4
),
335
347
(
1972
).
101.
T.
Secomb
and
R.
Hsu
, “
Analysis of red blood cell motion through cylindrical micropores: Effects of cell properties
,”
Biophys J.
71
(
2
),
1095
1101
(
1996
).
102.
Y.
Haik
,
V. N.
Pai
, and
C. J.
Chen
, “
Apparent viscosity of human blood in a high static magnetic field
,”
J. Magn. Magn. Mater.
225
(
1–2
),
180
186
(
2001
).
103.
E.
Evans
and
R.
Hochmuth
, “
Membrane viscoelasticity
,”
Biophys. J.
16
(
1
),
1
11
(
1976
).
104.
H. J.
Meiselman
,
E. A.
Evans
, and
R. M.
Hochmuth
, “
Membrane mechanical properties of ATP-depleted human erythrocytes
,”
Blood.
52
(
3
),
499
504
(
1978
).
105.
R. M.
Hochmuth
,
K. L.
Buxbaum
, and
E. A.
Evans
, “
Temperature dependence of the viscoelastic recovery of red cell membrane
,”
Biophys. J.
29
(
1
),
177
182
(
1980
).
106.
J. C.
Lee
and
D. E.
Discher
, “
Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding
,”
Biophys. J.
81
,
3178
3192
(
2001
).
107.
G.
Lenormand
,
S.
Hénon
,
A.
Richert
,
J.
Siméon
, and
F.
Gallet
, “
Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton
,”
Biophys. J.
81
(
1
),
43
56
(
2001
).
108.
W. C.
Hwang
and
R. E.
Waugh
, “
Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells
,”
Biophys J.
72
(
6
),
2669
2678
(
1997
).
109.
H.
Strey
,
M.
Peterson
, and
E.
Sackmann
, “
Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition
,”
Biophys. J.
69
(
2
),
478
488
(
1995
).
110.
A.
Zilker
,
H.
Engelhardt
, and
E.
Sackmann
, “
Dynamic reflection interference contrast (RIC-) microscopy: A new method to study surface excitations of cells and to measure membrane bending elastic moduli
,”
J. Phys. (France)
48
(
12
),
2139
2151
(
1987
).
111.
L.
Scheffer
,
A.
Bitler
,
E.
Ben-Jacob
, and
R.
Korenstein
, “
Atomic force pulling: probing the local elasticity of the cell membrane
,”
Eur Biophys J.
30
(
2
),
83
90
(
2001
).
112.
K.
Zeman
,
H.
Engelhard
, and
E.
Sackmann
, “
Bending undulations and elasticity of the erythrocyte membrane: Effects of cell shape and membrane organization
,”
Eur. Biophys. J.
18
(
4
),
203
219
(
1990
).
113.
P.
Bronkhorst
,
G.
Streekstra
,
J.
Grimbergen
,
E.
Nijhof
,
J.
Sixma
, and
G.
Brakenhoff
, “
A new method to study shape recovery of red blood cells using multiple optical trapping
,”
Biophys. J.
69
(
5
),
1666
1673
(
1995
).
114.
T.
Betz
,
M.
Lenz
,
J.-F.
Joanny
, and
C.
Sykes
, “
ATP-dependent mechanics of red blood cells
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
36
),
15320
15325
(
2009
).
115.
J. R.
Williamson
,
R. A.
Gardner
,
C. W.
Boylan
 et al., “
Microrheologic investigation of erythrocyte deformability in diabetes mellitus,”
Blood
65
(
2
),
283
288
(
1985
).
116.
R. E.
Waugh
and
E. A.
Evans
, “
Thermoelasticity of red blood cell membranes
,”
Biophys. J.
26
,
115
131
(
1979
).
117.
P. G.
Gallagher
, “
Red cell membrane disorders
,”
Hematology.
2005
(
1
),
13
18
.
118.
X.
An
and
N.
Mohandas
, “
Disorders of red cell membrane
,”
British J. Haematology
141
(
3
),
367
375
(
2008
).
119.
A.
Iolascon
,
R. A.
Avvisati
, and
C.
Piscopo
, “
Hereditary spherocytosis
,”
Transfus. Clin Biol.
17
(
3
),
138
142
(
2010
).
120.
P. G.
Gallagher
and
B. G.
Forget
, “
Hematologically important mutations: Spectrin and ankyrin variants in hereditary spherocytosis
,”
Blood Cells, Mol., Dis.
24
(
4
),
539
543
(
1998
).
121.
S.
Perrotta
,
P. G.
Gallagher
, and
N.
Mohandas
, “
Hereditary spherocytosis
,”
Lancet
372
(
9647
),
1411
1426
(
2008
).
122.
P.
Agre
,
E. P.
Orringer
,
D. H.
Chui
, and
V.
Bennett
, “
A molecular defect in two families with hemolytic poikilocytic anemia: Reduction of high affinity membrane binding sites for ankyrin
,”
J. Clin. Invest.
68
(
6
),
1566
1576
(
1981
).
123.
K.
Nakashima
and
E.
Beutler
, “
Erythrocyte cellular and membrane deformability in hereditary spherocytosis
,”
Blood.
53
(
3
),
481
485
(
1979
).
124.
J. A.
Chasis
,
P.
Agre
, and
N.
Mohandas
, “
Decreased membrane mechanical stability and invivo loss of surface-area reflect spectrin deficiencies in hereditary spherocytosis
,”
J. Clin. Invest.
82
(
2
),
617
623
(
1988
).
125.
J.
Delaunay
, “
The molecular basis of hereditary red cell membrane disorders
,”
Blood Rev.
21
(
1
),
1
20
(
2007
).
126.
L. Da
Costa
,
N.
Mohandas
,
M.
Sorette
,
M. J.
Grange
,
G.
Tchernia
, and
T.
Cynober
, “
Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia
,”
Blood
98
(
10
),
2894
2899
(
2001
).
127.
N.
Mohandas
,
L.-L. E.
Injo
,
M.
Friedman
, and
J. W.
Mak
, “
Rigid membranes of Malayan ovalocytes: A likely genetic barrier against malaria
,”
Blood
63
(
6
),
1385
1392
(
1984
).
128.
S.
Eber
and
S. E.
Lux
, “
Hereditary spherocytosis—Defects in proteins that connect the membrane skeleton to the lipid bilayer
,”
Semin. Hematol.
41
(
2
),
118
141
(
2004
).
129.
R. E.
Waugh
and
P. L. La
Celle
, “
Abnormalities in the membrane material properties of hereditary spherocytes
,”
J. Biomech. Eng.
102
(
3
),
240
(
1980
).
130.
R. E.
Waugh
, “
Effects of inherited membrane abnormalities on the viscoelastic properties of erythrocyte-membrane
,”
Biophys. J.
51
(
3
),
363
369
(
1987
).
131.
R. E.
Waugh
and
P.
Agre
, “
Reductions of erythrocyte-membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis
,”
J. Clin. Invest.
81
(
1
),
133
141
(
1988
).
132.
P.
Silveira
,
T.
Cynober
,
D.
Dhermy
,
N.
Mohandas
, and
G.
Tchernia
, “
Red blood cell abnormalities in hereditary elliptocytosis and their relevance to variable clinical expression
,”
Am. J. Clin. Pathol.
108
(
4
),
391
399
(
1997
).
133.
S. M.
Grundy
,
H. B.
Brewer
,
J. I.
Cleeman
,
S. C.
Smith
, and
C.
Lenfant
, “
Definition of metabolic syndrome: Report of the national heart, lung, and blood institute/American heart association conference on scientific issues related to definition
,” Proceedings of NHLBI/AHA [
Circulation
109
(
3
),
433
438
(
2004
)].
134.
C. Le
Devehat
,
T.
Khodabandehlou
, and
M.
Vimeux
, “
Impaired hemorheological properties in diabetic patients with lower limb arterial ischaemia
,”
Clin. Hemorheol. Microcirc.
25
(
2
),
43
48
(
2001
).
135.
Y. I.
Cho
,
M. P.
Mooney
, and
D. J.
Cho
, “
Hemorheological disorders in diabetes mellitus
,”
J. Diabetes Sci. Technol.
2
(
6
),
1130
1138
(
2008
).
136.
E.
Cecchin
,
S.
Demarchi
,
G.
Panarello
, and
V.
Deangelis
, “
Rheological abnormalities of erythrocyte deformability and increased glycosylation of hemoglobin in the nephrotic syndrome
,”
Am. J. Nephrol.
7
(
1
),
18
21
(
1987
).
137.
S. M.
Macrury
,
J. C.
Lockhart
,
M.
Small
,
A. I.
Weir
,
A. C.
Maccuish
, and
G. D. O.
Lowe
, “
Do rheological variables play a role in diabetic peripheral neuropathy
,”
Diabetic Med.
8
(
3
),
232
236
(
1991
).
138.
D. E.
McMillan
, “
Plasma protein changes, blood viscosity, and diabetic microangiopathy
,”
Diabetes.
25
(
2 Suppl
),
858
864
(
1976
).
139.
D. E.
McMillan
,
N. G.
Utterback
, and
J. L.
Puma
, “
Reduced erythrocyte deformability in diabetes
,”
Diabetes
27
(
9
),
895
901
(
1978
).
140.
J. M.
Norton
,
N. D.
Barker
, and
P. W.
Rand
, “
Effect of cell geometry, internal viscosity, and pH on erythrocyte filterability
,”
Proc. Soc. Exp. Biol. Med.
166
(
3
),
449
456
(
1981
).
141.
M.
Brownlee
and
A.
Cerami
, “
The biochemistry of the complications of diabetes mellitus
,”
Annu. Rev. Biochem.
50
,
385
432
(
1981
).
142.
M.
Brownlee
,
H.
Vlassara
, and
A.
Cerami
, “
Nonenzymatic glycosylation and the pathogenesis of diabetic complications
,”
Ann. Intern. Med.
101
(
4
),
527
537
(
1984
).
143.
C.
Watala
,
H.
Witas
,
L.
Olszowska
, and
W.
Piasecki
, “
The association between erythrocyte internal viscosity, protein nonenzymatic glycosylation and erythrocyte-membrane dynamic properties in juvenile diabetes-mellitus
,”
Int. J. Exp. Pathol.
73
(
5
),
655
663
(
1992
).
144.
S.-H.
Schonbein
and
E.
Volger
, “
Red-cell aggregation and red-cell deformability in diabetes
,”
Diabetes
25
(
2 Suppl
),
897
902
(
1976
).
145.
L.
Dintenfass
, “
Blood viscosity factors in severe nondiabetic and diabetic retinopathy
,”
Biorheology
14
(
4
),
151
157
(
1977
).
146.
A.
Barnes
,
P.
Locke
,
P.
Scudder
,
T.
Dormandy
,
J.
Dormandy
, and
J.
Slack
, “
Is hyperviscosity a treatable component of diabetic microcirculatory disease?
,”
Lancet
310
(
8042
),
789
791
(
1977
).
147.
S.
Shin
,
Y.
Ku
,
N.
Babu
, and
M.
Singh
, “
Erythrocyte deformability and its variation in diabetes mellitus
,”
Indian J. Experimental Biology
45
(1),
121
128
(
2007
).
148.
E.
Ernst
and
A.
Matrai
, “
Altered red and white blood-cell rheology in type II diabetes
,”
Diabetes
35
(
12
),
1412
1415
(
1986
).
149.
G.
Caimi
and
R.
Presti
, “
Techniques to evaluate erythrocyte deformability in diabetes mellitus
,”
Acta Diabetol.
41
(
3
),
99
103
(
2004
).
150.
P.
La Celle
, “
Behavior of abnormal erythrocytes in capillaries
,” in
Erythrocyte Mechanics and Blood Flows
, edited by
G.
Cokelet
,
H.
Meiselman
, and
D.
Brooks
(
Lis
,
New York
,
1980
), p.
195
.
151.
L.
Sewchand
,
W.
Hanpel
,
K.
Diddie
, and
H.
Meiselman
, “
Membrane mechanical properties of erythrocytes from patients with diabetic retinopathy
,”
Microcirculation
1
(
361
),
937
943
(
1982
).
152.
C. D.
Brown
,
H. S.
Ghali
,
Z. H.
Zhao
,
L. L.
Thomas
, and
E. A.
Friedman
, “
Association of reduced red blood cell deformability and diabetic nephropathy
,”
Kidney Int.
67
(
1
),
295
300
(
2005
).
153.
S.
Shin
,
Y.
Ku
,
M.
Park
, and
J.
Suh
, “
Slit-flow ektacytometry: Laser diffraction in a slit rheometer
,”
Cytometry, Part B
65
(
1
),
6
13
(
2005
).
154.
S.
Shin
,
J.
Hou
,
J.
Suh
, and
M.
Singh
, “
Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability
,”
Clin. Hemorheol. Microcirc.
37
(
4
),
319
328
(
2007
).
155.
C. Le
Devehat
,
T.
Khodabandehlou
, and
M.
Vimeux
, “
Relationship between hemorheological and microcirculatory abnormalities in diabetes mellitus
,”
Diabete Metab.
20
(
4
),
401
404
(
1994
).
156.
S.
Zimny
,
F.
Dessel
,
M.
Ehren
,
M.
Pfohl
, and
H.
Schatz
, “
Early detection of microcirculatory impairment in diabetic patients with foot at risk
,”
Diabetes Care
24
(
10
),
1810
1814
(
2001
).
157.
S.
Dayton
,
J. M.
Chapman
,
M. L.
Pearce
, and
G. J.
Popják
, “
Cholesterol, atherosclerosis, ischemic heart disease, and stroke
,”
Ann. Intern. Med.
72
(
1
),
97
109
(
1970
).
158.
G.
Assmann
and
H.
Schulte
, “
Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience)
,”
Am. J. Cardiology
70
(7),
733–737
(
1992
).
159.
F. D.
Kolodgie
,
A. P.
Burke
,
G.
Nakazawa
,
Q.
Cheng
,
X.
Xu
, and
R.
Virmani
, “
Free cholesterol in antherosclerotic plaques: Where does it come from?
,”
Curr. Opin. Lipidol.
18
(
5
),
500
507
(
2007
).
160.
M.
Kohno
,
K.
Murakawa
,
K.
Yasunari
 et al., “
Improvement of erythrocyte deformability by cholesterol-lowering therapy with pravastatin in hypercholesterolemic patients
,”
Metab., Clin. Exp.
46
(
3
),
287
291
(
1997
).
161.
K.
Murakawa
,
M.
Kohno
,
K.
Yasunari
 et al., “
Effect of salt-loading on erythrocyte deformability in spontaneously hypertensive and Wistar-Kyoto rats,”
Life Sci.
45
(
12
),
1089
1095
(
1989
).
162.
A.
Chabanel
,
M.
Flamm
,
K. L.
Sung
,
M. M.
Lee
,
D.
Schachter
, and
S.
Chien
, “
Influence of cholesterol content on red cell membrane viscoelasticity and fluidity
,”
Biophys. J.
44
(
2
),
171
176
(
1983
).
163.
R. A.
Cooper
,
E. C.
Arner
,
J. S.
Wiley
, and
S. J.
Shattil
, “
Modification of red cell membrane structure by cholesterol-rich lipid dispersions. A model for the primary spur cell defect
,”
J. Clin. Invest.
55
(
1
),
115
126
(
1975
).
164.
A.
Vaya
,
M.
Martinez
,
P.
Solves
,
J. L.
Barbera
, and
J.
Aznar
, “
Red blood cell deformability determined by the Rheodyn SSD in familial hypercholesterolemia
,”
Clin. Hemorheol. Microcirc.
16
(
4
),
515
522
(
1996
).
165.
A. M.
Forsyth
,
S.
Braunmueller
,
J.
Wan
,
T.
Franke
, and
H. A.
Stone
, “
The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release
,”
Microvasc. Res.
83
(
3
),
347
351
(
2012
).
166.
S. B.
Solerte
,
M.
Fioravanti
,
N.
Pezza
 et al., “
Hyperviscosity and microproteinuria in central obesity: Relevance to cardiovascular risk,”
Int. J. Obes.
21
(
6
),
417
423
(
1997
).
167.
K.
Seki
,
H.
Sumino
,
M.
Nara
,
N.
Ishiyama
,
M.
Nishino
, and
M.
Murakami
, “
Relationships between blood rheology and age, body mass index, blood cell count, fibrinogen, and lipids in healthy subjects
,”
Clin. Hemorheol. Microcirc.
34
(
3
),
401
410
(
2006
).
168.
M.
Wysocki
,
M.
Krotkiewski
,
M.
Braide
, and
U.
Bagge
, “
Hemorheological disturbances, metabolic parameters and blood-pressure in different types of obesity
,”
Atherosclerosis
88
(
1
),
21
28
(
1991
).
169.
N.
Babu
and
M.
Singh
, “
Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes
,”
Clin. Hemorheol. Microcirc.
31
(
4
),
273
280
(
2004
).
170.
F.
Beguinot
,
D.
Tramontano
,
C.
Duilio
 et al., “
Alteration of erythrocyte-membrane lipid fluidity in human obesity
,”
J. Clin. Endocrinol. Metabol.
60
(
6
),
1226
1230
(
1985
).
171.
G.
Ferretti
,
M.
Dotti
,
E.
Bartolotta
,
P. L.
Giorgi
,
G.
Curatola
, and
E.
Bertoli
, “
Changes of erythrocyte-membrane fluidity associated with childhood obesity—A molecular study using fluorescence spectroscopy
,”
Biochem. Med. Metab. Biol.
40
(
2
),
101
108
(
1988
).
172.
E.
Faloia
,
G. G. M.
Garrapa
,
D.
Martarelli
 et al., “
Physicochemical and functional modifications induced by obesity on human erythrocyte membranes
,”
Eur. J. Clin. Invest.
29
(
5
),
432
437
(
1999
).
173.
R.
Cazzola
,
M.
Rondanelli
,
S. Russo
Volpe
,
E.
Ferrari
, and
B.
Cestaro
, “
Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes
,”
J. Lipid Res.
45
(
10
),
1846
1851
(
2004
).
174.
E.
Sola
,
A.
Vaya
,
M. L.
Santaolaria
 et al., “
Erythrocyte deformability in obesity measured by ektacytometric techniques
,”
Clin. Hemorheol. Microcirc.
37
(
3
),
219
227
(
2007
).
175.
M.
Nakao
,
T.
Nakao
, and
S.
Yamazoe
, “
Adenosine triphosphate and maintenance of shape of the human red cells
,”
Nature
187
,
945
946
(
1960
).
176.
S.
Tuvia
,
S.
Levin
,
A.
Bitler
, and
R.
Korenstein
, “
Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes
,”
J. Cell Biol.
141
(
7
),
1551
1561
(
1998
).
177.
S.
Levin
and
R.
Korenstein
, “
Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton
,”
Biophys. J.
60
(
3
),
733
737
(
1991
).
178.
N. S.
Gov
and
S. A.
Safran
, “
Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects
,”
Biophys. J.
88
(
3
),
1859
1874
(
2005
).
179.
J.
Wan
,
A. M.
Forsyth
, and
H. A.
Stone
, “
Red blood cell dynamics: From cell deformation to ATP release
,”
Integr. Biol.
3
(
10
),
972
981
(
2011
).
180.
R. I.
Weed
,
P. L.
LaCelle
, and
E. W.
Merrill
, “
Metabolic dependence of red cell deformability
,”
J. Clin. Invest.
48
(
5
),
795
809
(
1969
).
181.
A. M.
Forsyth
,
J.
Wan
,
P. D.
Owrutsky
,
M.
Abkarian
, and
H. A.
Stone
, “
Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
27
),
10986
10991
(
2011
).
182.
J. Y.
Chan
,
M.
Kwong
,
M.
Lo
,
R.
Emerson
, and
F. A.
Kuypers
, “
Reduced oxidative-stress response in red blood cells from p45NFE2-deficient mice
,”
Blood
97
,
2151
2158
(
2001
).
183.
L.
Kuo
and
T. W.
Hein
, “
Vasomotor regulation of coronary microcirculation by oxidative stress: Role of arginase
,”
Front. Immunol.
4
,
237
(
2013
).
184.
A.
Goette
,
A.
Bukowska
,
C. H.
Lillig
, and
U.
Lendeckel
, “
Oxidative stress and microcirculatory flow abnormalities in the ventricles during atrial fibrillation
,”
Front. Physiol.
3
,
236
(
2012
).
185.
M. D.
Scott
,
P. R.
Fessard
,
M. S.
Ba
,
B. H.
Lubin
, and
Y.
Beuzard
, “
Alpha- and beta-haemoglobin chain induced changes in normal erythrocyte deformability: Comparison to beta thalassaemia intermedia and Hb H disease
,”
Br. J. Haematol.
80
(
4
),
519
526
(
1992
).
186.
F. A.
Kuypers
,
M. D.
Scott
,
M. A.
Schott
,
B.
Lubin
, and
D. T.
Chiu
, “
Use of ektacytometry to determine red cell susceptibility to oxidative stress
,”
J. Lab. Clin. Med.
116
(
4
),
535
545
(
1990
).
187.
L. M.
Snyder
,
N. L.
Fortier
,
J.
Trainor
 et al., “
Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking,”
J. Clin. Invest.
76
(
5
),
1971
1977
(
1985
).
188.
R. P.
Hebbel
,
A.
Leung
, and
N.
Mohandas
, “
Oxidation-induced changes in microrheologic properties of the red blood cell membrane
,”
Blood
76
(
5
),
1015
1020
(
1990
).
189.
S. L.
Schrier
and
N.
Mohandas
, “
Globin-chain specificity of oxidation-induced changes in red blood cell membrane properties
,”
Blood
79
(
6
),
1586
1592
(
1992
).
190.
G. J.
Streekstra
,
J. G.
Dobbe
, and
A. G.
Hoekstra
, “
Quantification of the fraction poorly deformable red blood cells using ektacytometry
,”
Opt. Express
18
(
13
),
14173
14182
(
2010
).
191.
P. H.
John
,
C. P.
Winlove
, and
G. P.
Peter
, “
Effect of hydroperoxides on red blood cell membrane mechanical properties
,”
Biophys. J.
101
(
8
),
1921
1929
(
2011
).
192.
J. M.
Kwan
,
Q.
Guo
,
D. L.
Kyluik-Price
,
H.
Ma
, and
M. D.
Scott
, “
Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells
,”
Am. J. Hematol.
88
(
8
),
682
689
(
2013
).
193.
A. M.
Risitano
, “
Paroxysmal nocturnal hemoglobinuria and other complement-mediated hematological disorders
,”
Immunobiology
217
(
11
),
1080
1087
(
2012
).
194.
R.
Brodsky
, “
Advances in the diagnosis and therapy of paroxysmal nocturnal hemoglobinuria
,”
Blood Rev.
22
(
2
),
65
74
(
2008
).
195.
W.
Savage
and
R.
Brodsky
, “
New insights into paroxysmal nocturnal hemoglobinuria
,”
Hematology
12
(
5
),
371
376
(
2007
).
196.
M.
Lee
,
S.
Narayanan
,
E. G.
McGeer
, and
P. L.
McGeer
, “
Aurin tricarboxylic acid protects against red blood cell hemolysis in patients with paroxysmal nocturnal hemoglobinemia
,”
PLoS One
9
(
1
),
e87316
(
2014
).
197.
G. B.
Nash
,
C. S.
Johnson
, and
H. J.
Meiselman
, “
Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease
,”
Blood
63
(
1
),
73
82
(
1984
).
198.
B.
Huang
,
H.
Wu
,
D.
Bhaya
 et al., “
Counting low-copy number proteins in a single cell
,”
Science
315
,
81
84
(
2007
).
199.
D.
Barat
,
D.
Spencer
,
G.
Benazzi
,
M. C.
Mowlem
, and
H.
Morgan
, “
Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer
,”
Lab Chip.
12
(
1
),
118
126
(
2012
).
200.
D.
Holmes
,
J. K.
She
,
P. L.
Roach
, and
H.
Morgan
, “
Bead-based immunoassays using a micro-chip flow cytometer
,”
Lab Chip
7
(
8
),
1048
1056
(
2007
).
201.
D.
Holmes
and
H.
Morgan
, “
Single cell impedance cytometry for identification and counting of cd4 t-cells in human blood using impedance labels
,”
Anal. Chem.
82
(
4
),
1455
1461
(
2010
).
202.
J.
Kim
,
M.
Johnson
,
P.
Hill
, and
R. S.
Sonkul
, “
Automated microfluidic DNA/RNA extraction with both disposable and reusable components
,”
J. Micromech. Microeng.
22
(
1
),
015007
(
2012
).
203.
E. A.
Oblath
,
W. H.
Henley
,
J. P.
Alarie
, and
J. M.
Ramsey
, “
A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva
,”
Lab Chip
13
(
7
),
1325
1332
(
2013
).
204.
V.
Sanchez-Freire
,
A. D.
Ebert
,
T.
Kalisky
,
S. R.
Quake
, and
J. C.
Wu
, “
Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns
,”
Nat. Protoc.
7
(
1
),
829
838
(
2012
).
205.
T.
Herricks
,
K. B.
Seydel
,
M.
Molyneux
,
T.
Taylor
, and
P. K.
Rathod
, “
Estimating physical splenic filtration of Plasmodium falciparum-infected red blood cells in malaria patients
,”
Cell. Microbiol.
14
(
12
),
1880
1891
(
2012
).
206.
J.
Shelby
,
J.
White
,
K.
Ganesan
,
P.
Rathod
, and
D.
Chiu
, “
A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
,”
Proc. Natl. Acad. Sci. U.S.A.
100
(
25
),
14618
14622
(
2003
).
207.
Q.
Guo
,
S. J.
Reiling
,
P.
Rohrbach
, and
H.
Ma
, “
Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum
,”
Lab Chip.
12
(
6
),
1143
1150
(
2012
).
208.
D. K.
Wood
,
A.
Soriano
,
L.
Mahadevan
,
J. M.
Higgins
, and
S. N.
Bhatia
, “
A biophysical indicator of vaso-occlusive risk in sickle cell disease
,”
Sci. Transl. Med.
4
(
123
),
123ra26
(
2012
).
209.
M.
Tsai
,
A.
Kita
,
J.
Leach
 et al., “
In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology,”
J. Clin. Invest.
122
(
1
),
408
418
(
2012
)
You do not currently have access to this content.