This paper presents a continuous flow microfluidic device for the separation of DNA from blood using magnetophoresis for biological applications and analysis. This microfluidic bio-separation device has several benefits, including decreased sample handling, smaller sample and reagent volumes, faster isolation time, and decreased cost to perform DNA isolation. One of the key features of this device is the use of short-range magnetic field gradients, generated by a micro-patterned nickel array on the bottom surface of the separation channel. In addition, the device utilizes an array of oppositely oriented, external permanent magnets to produce strong long-range field gradients at the interfaces between magnets, further increasing the effectiveness of the device. A comprehensive simulation is performed using COMSOL Multiphysics to study the effect of various parameters on the magnetic flux within the separation channel. Additionally, a microfluidic device is designed, fabricated, and tested to isolate DNA from blood. The results show that the device has the capability of separating DNA from a blood sample with a purity of 1.8 or higher, a yield of up to 33 μg of polymerase chain reaction ready DNA per milliliter of blood, and a volumetric throughput of up to 50 ml/h.

1.
N.
Pamme
, “
On-chip bioanalysis with magnetic particles
,”
Curr. Opin. Chem. Biol.
16
,
436
443
(
2012
).
2.
E. P.
Furlani
,
Y.
Sahoo
,
K. C.
Ng
,
J. C.
Wortman
, and
T. E.
Monk
, “
A model for predicting magnetic particle capture in a microfluidic bioseparator
,”
Biomed. Microdevices
9
,
451
463
(
2007
).
3.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
, “
High throughput, multi-target magnetophoretic separation
,” in
Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences
(
2008
), pp.
1302
1304
.
4.
S. A.
Khashan
,
E.
Elnajjar
, and
Y.
Haik
, “
Numerical simulation of the continuous biomagnetic separation in a two-dimensional channel
,”
Int. J. Multiphase Flow
37
,
947
955
(
2011
).
5.
A.
Sinha
,
R.
Ganguly
,
K. D.
Anindya
, and
K. P.
Ishwar
, “
Single magnetic particle dynamics in a microchannel
,”
Phys. Fluids
19
,
117102
(
2007
).
6.
S.
Mohanty
,
T.
Baier
, and
F.
Schönfeld
, “
CFD Modelling of Cell Capture in BioMEMs
,”
Proceedings of the World Congress on Engineering and Computer Science
(
2008
), pp.
1
5
.
7.
E. P.
Furlani
, “
Magnetophoretic separation of blood cells at the microscale
,”
J. Phys. D: Appl. Phys.
40
,
1313
1319
(
2007
).
8.
M.
Zborowski
,
G. R.
Ostera
,
L. R.
Moore
,
S.
Miliron
,
J. J.
Chalmers
, and
A. N.
Schechter
, “
Red blood cell magnetophoresis
,”
Biophys. J.
84
,
2638
2645
(
2003
).
9.
K.
Nandy
,
S.
Chaudhuri
,
R.
Ganguly
, and
I. K.
Puri
, “
Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices
,”
J. Magn. Magn. Mater.
320
,
1398
1405
(
2008
).
10.
E. E.
Keaveny
and
M. R.
Maxey
, “
Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids
,”
J. Comput. Phys.
227
,
9554
9571
(
2008
).
11.
M. D.
Tarn
,
S. A.
Peyman
,
D.
Robert
,
A.
Iles
,
C.
Wilhelm
, and
N.
Pamme
, “
The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis
,”
J. Magn. Magn. Mater.
321
,
4115
4122
(
2009
).
12.
N.
Pamme
and
C.
Wilhelm
, “
Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis
,”
Lab Chip
6
,
974
980
(
2006
).
13.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
, “
Microfluidics for cell separation
,”
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
14.
N.
Pamme
, “
Magnetism and microfluidics
,”
Lab Chip
6
,
24
38
(
2006
).
15.
E. D.
Pratt
,
C.
Huang
,
B. G.
Hawkings
,
J. P.
Gleghorn
, and
B. J.
Kirby
, “
Rare cell capture in microfluidic devices
,”
Chem. Eng. Sci.
66
(
7
),
1508
1522
(
2011
).
16.
J.
Autebert
,
B.
Coudert
,
F. C.
Bidard
,
J. Y.
Pierga
,
S.
Descroix
,
L.
Malaquin
, and
J. L.
Vivoy
, “
Microfluidic: An innovative tool for efficient cell sorting
,”
Methods
57
(
3
),
297
307
(
2012
).
17.
D. W.
Inglis
,
R.
Riehn
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous microfluidic immunomagnetic cell separation
,”
Appl. Phys. Lett.
85
(
21
),
5093
5095
(
2004
).
18.
N.
Pamme
, “
Continuous flow separations in microfluidic devices
,”
Lab Chip
7
,
1644
1659
(
2007
).
19.
M.
Karle
,
J.
Miwi
,
G.
Czilwik
,
V.
Auwärter
,
G.
Roth
,
R.
Zengerle
, and
F.
von Stetten
, “
Continuous microfluidic DNA extraction using phase-transfer magnetophoresis
,”
Lab Chip
10
(
23
),
3284
3290
(
2010
).
20.
See http://www.spinomix.com/-MagPhase for more information about the MagPhase™ instrument.
21.
J.
Darabi
and
C.
Guo
, “
On-chip magnetophoretic isolation of CD4 + T cells from blood
,”
Biomicrofluidics
7
,
054106
(
2013
).
22.
Y.
Jung
,
Y.
Choi
,
K. H.
Han
, and
A. B.
Frazier
, “
Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples
,”
Biomed. Microdevices
12
,
637
645
(
2010
).
23.
L.
Liang
and
X.
Xuan
, “
Continuous sheath-free magnetic separation of particles in a U-shaped microchannel
,”
Biomicrofluidics
6
,
044106
(
2012
).
24.
S. A.
Peyman
,
A.
Iles
, and
N.
Pamme
, “
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow
,”
Lab Chip
9
,
3110
3117
(
2009
).
25.
M. D.
Tarn
,
N.
Hirota
,
A.
Iles
, and
N.
Pamme
, “
On-chip diamagnetic repulsion in continuous flow
,”
Sci. Technol. Adv. Mater.
10
,
014611
(
2009
).
You do not currently have access to this content.