Shear stress is the major mechanical force applied on vascular endothelial cells by blood flow, and is a crucial factor in normal vascular physiology and in the development of some vascular pathologies. The exact mechanisms of cellular mechano-transduction in mammalian cells and tissues have not yet been elucidated, but it is known that mechanically sensitive receptors and ion channels play a crucial role. This paper describes the use of a novel and efficient microfluidic device to study mechanically-sensitive receptors and ion channels in vitro, which has three independent channels from which recordings can be made and has a small surface area such that fewer cells are required than for conventional flow chambers. The contoured channels of the device enabled examination of a range of shear stresses in one field of view, which is not possible with parallel plate flow chambers and other previously used devices, where one level of flow-induced shear stress is produced per fixed flow-rate. We exposed bovine aortic endothelial cells to different levels of shear stress, and measured the resulting change in intracellular calcium levels ([Ca2+]i) using the fluorescent calcium sensitive dye Fluo-4AM. Shear stress caused an elevation of [Ca2+]i that was proportional to the level of shear experienced. The response was temperature dependant such that at lower temperatures more shear stress was required to elicit a given level of calcium signal and the magnitude of influx was reduced. We demonstrated that shear stress-induced elevations in [Ca2+]i are largely due to calcium influx through the transient receptor potential vanilloid type 4 ion channel.

1.
F.
Moccia
,
F.
Tanzi
, and
L.
Munaron
,
Curr. Mol. Med.
14
(4),
457
480
(
2014
).
2.
J.
Arnadottir
and
M.
Chalfie
,
Ann. Rev. Biophys.
39
,
111
137
(
2010
).
3.
B.
Coste
,
Med. Sci.
28
(
12
),
1056
1057
(
2012
).
4.
J. C.
Torres-Narváez
,
V.
Mondragón Ldel
,
E.
Varela López
,
I.
Pérez-Torres
,
J. A.
Díaz Juárez
,
J.
Suárez
, and
G. P.
Hernández
,
Exp. Clin. Cardiol.
17
(
3
),
89
94
(
2012
).
5.
S.
Olsen
,
J.
Stover
, and
J.
Nagatomi
,
Ann. Biomed. Eng.
39
(
2
),
688
697
(
2011
).
6.
B.
Nilius
,
J.
Vriens
,
J.
Prenen
,
G.
Droogmans
, and
T.
Voets
,
Am. J. Physiol.: Cell Physiol.
286
(
2
),
C195
C205
(
2004
).
7.
R. G.
O'Neil
and
S.
Heller
,
Pflugers Arch.
451
(
1
),
193
203
(
2005
).
8.
R.
Kohler
,
W. T.
Heyken
,
P.
Heinau
,
R.
Schubert
,
H.
Si
,
M.
Kacik
,
C.
Busch
,
I.
Grgic
,
T.
Maier
, and
J.
Hoyer
,
Arterioscler., Thromb., Vasc. Biol.
26
(
7
),
1495
1502
(
2006
).
9.
D. P.
Poole
,
S.
Amadesi
,
N. A.
Veldhuis
,
F. C.
Abogadie
,
T.
Lieu
,
W.
Darby
,
W.
Liedtke
,
M. J.
Lew
,
P.
McIntyre
, and
N. W.
Bunnett
,
J. Biol. Chem.
288
(
8
),
5790
5802
(
2013
).
10.
T.
Wegierski
,
U.
Lewandrowski
,
B.
Muller
,
A.
Sickmann
, and
G.
Walz
,
J. Biol. Chem.
284
(
5
),
2923
2933
(
2009
).
11.
C.
Perez-Terzic
,
M.
Jaconi
, and
L.
Stehno-Bittel
, in
Calcium Signaling Protocols
, edited by
D.
Lambert
(
Humana Press
,
1999)
, Vol.
114
, pp.
75
91
.
12.
L. Y.
Bourguignon
,
A.
Chu
,
H.
Jin
, and
N. R.
Brandt
,
J. Biol. Chem.
270
(
30
),
17917
17922
(
1995
).
13.
R. B.
Huang
,
A. L.
Gonzalez
, and
O.
Eniola-Adefeso
,
Biotechnol. Bioeng.
110
(
3
),
999
1003
(
2013
).
14.
W. O.
Lane
,
A. E.
Jantzen
,
T. A.
Carlon
,
R. M.
Jamiolkowski
,
J. E.
Grenet
,
M. M.
Ley
,
J. M.
Haseltine
,
L. J.
Galinat
,
F.-H.
Lin
,
J. D.
Allen
,
G. A.
Truskey
, and
H. E.
Achneck
,
J. Vis. Exp.
59
,
3349
(
2012
).
15.
S.
Mohan
,
N.
Mohan
,
A. J.
Valente
, and
E. A.
Sprague
,
Am. J. Physiol. Cell Physiol.
276
(
5
),
C1100
C1107
(
1999
).
16.
J. M.
Dolan
,
H.
Meng
,
S.
Singh
,
R.
Paluch
, and
J.
Kolega
,
Ann. Biomed. Eng.
39
(
6
),
1620
1631
(
2011
).
17.
N.
Sakamoto
,
K.
Segawa
,
M.
Kanzaki
,
T.
Ohashi
, and
M.
Sato
,
Biochem. Biophys. Res. Commun.
398
(
3
),
426
432
(
2010
).
18.
J. A.
LaMack
and
M. H.
Friedman
,
Am. J. Physiol. Heart Circ. Physiol.
293
(
5
),
H2853
H2859
(
2007
).
19.
M. P.
Szymanski
,
E.
Metaxa
,
H.
Meng
, and
J.
Kolega
,
Ann. Biomed. Eng.
36
(
10
),
1681
1689
(
2008
).
20.
C.
Urbich
,
E.
Dernbach
,
A.
Reissner
,
M.
Vasa
,
A. M.
Zeiher
, and
S.
Dimmeler
,
Arterioscler., Thromb., Vasc. Biol.
22
(
1
),
69
75
(
2002
).
21.
J.
Seebach
,
P.
Dieterich
,
F.
Luo
,
H.
Schillers
,
D.
Vestweber
,
H.
Oberleithner
,
H. J.
Galla
, and
H. J.
Schnittler
,
Lab. Invest.
80
(
12
),
1819
1831
(
2000
).
22.
F. J.
Alenghat
,
B.
Fabry
,
K. Y.
Tsai
,
W. H.
Goldmann
, and
D. E.
Ingber
,
Biochem. Biophys. Res. Commun.
277
(
1
),
93
99
(
2000
).
23.
R.
Estrada
,
G. A.
Giridharan
,
M.-D.
Nguyen
,
T. J.
Roussel
,
M.
Shakeri
,
V.
Parichehreh
,
S. D.
Prabhu
, and
P.
Sethu
,
Anal. Chem.
83
(
8
),
3170
3177
(
2011
).
24.
S.
Baratchi
,
K.
Khoshmanesh
,
C.
Sacristán
,
D.
Depoil
,
D.
Wlodkowic
,
P.
McIntyre
, and
A.
Mitchell
,
Biotechnol. Adv.
32
(
2
),
333
346
(
2014
).
25.
S.
Nahavandi
,
S.
Baratchi
,
R.
Soffe
,
S.-Y.
Tang
,
S.
Nahavandi
,
A.
Mitchell
, and
K.
Khoshmanesh
,
Lab Chip
14
(
9
),
1496
1514
(
2014
).
26.
B.
Martinac
,
J. Cell Sci.
117
(
12
),
2449
2460
(
2004
).
27.
E.
Gutierrez
,
B. G.
Petrich
,
S. J.
Shattil
,
M. H.
Ginsberg
,
A.
Groisman
, and
A.
Kasirer-Friede
,
Lab Chip
8
(
9
),
1486
1495
(
2008
).
28.
J.
GarciaAnoveros
and
D. P.
Corey
,
Curr. Biol.
6
(
5
),
541
543
(
1996
).
29.
J. K.
Tsou
,
R. M.
Gower
,
H. J.
Ting
,
U. Y.
Schaff
,
M. F.
Insana
,
A. G.
Passerini
, and
S. I.
Simon
,
Microcirculation
15
(
4
),
311
323
(
2008
).
30.
J.
Wang
,
J.
Heo
, and
S. Z.
Hua
,
Lab Chip
10
(
2
),
235
239
(
2010
).
31.
F. J.
Tovar-Lopez
,
G.
Rosengarten
,
E.
Westein
,
K.
Khoshmanesh
,
S. P.
Jackson
,
A.
Mitchell
, and
W. S.
Nesbitt
,
Lab Chip
10
(
24
),
291
302
(
2010
).
32.
J. M.
Kwiecien
,
P. B.
Little
, and
M. A.
Hayes
,
Can. J. Vet. Res.
58
(
3
),
211
219
(
1994
).
33.
K.
Poole
,
R.
Herget
,
L.
Lapatsina
,
H.-D.
Ngo
, and
G. R.
Lewin
,
Nat. Commun.
5
,
3520
(
2014
).
34.
D. P.
Gaver
and
S. M.
Kute
,
Biophys. J.
75
(
2
),
721
733
(
1998
).
35.
G. P.
Ahern
,
Trends Endocrinol. Metab.
24
(
11
),
554
560
(
2013
).
36.
A. T.
Billeter
,
J. L.
Hellmann
,
A.
Bhatnagar
, and
H. C.
Polk
, Jr.
,
Ann. Surg.
259
(
2
),
229
235
(
2014
).
37.
H.
Lu
,
L. Y.
Koo
,
W. M.
Wang
,
D. A.
Lauffenburger
,
L. G.
Griffith
, and
K. F.
Jensen
,
Anal. Chem.
76
(
18
),
5257
5264
(
2004
).
38.
B.
Coste
,
B.
Xiao
,
J. S.
Santos
,
R.
Syeda
,
J.
Grandl
,
K. S.
Spencer
,
S. E.
Kim
,
M.
Schmidt
,
J.
Mathur
,
A. E.
Dubin
,
M.
Montal
, and
A.
Patapoutian
,
Nature
483
(
7388
),
176
181
(
2012
).
39.
X.
Gao
,
L.
Wu
, and
R. G.
O'Neil
,
J. Biol. Chem.
278
(
29
),
27129
27137
(
2003
).
40.
A.
Ferrer-Montiel
,
A.
Fernandez-Carvajal
,
R.
Planells-Cases
,
G.
Fernandez-Ballester
,
J. M.
Gonzalez-Ros
,
A.
Messeguer
, and
R.
Gonzalez-Muniz
,
Expert Opin. Ther. Pat.
22
(
9
),
999
1017
(
2012
).
41.
V.
Hartmannsgruber
,
W.-T.
Heyken
,
M.
Kacik
,
A.
Kaistha
,
I.
Grgic
,
C.
Harteneck
,
W.
Liedtke
,
J.
Hoyer
, and
R.
Koehler
,
PLoS One
2
(
9
),
e827
(
2007
).
42.
S. A.
Mendoza
,
J.
Fang
,
D. D.
Gutterman
,
D. A.
Wilcox
,
A. H.
Bubolz
,
R.
Li
,
M.
Suzuki
, and
D. X.
Zhang
,
Am. J. Physiol Heart Circ. Physiol.
298
(
2
),
H466
H476
(
2010
).
43.
M.
Irnaten
,
R. C.
Barry
,
B.
Quill
,
A. F.
Clark
,
B. J. P.
Harvey
, and
C. J.
O'Brien
,
Invest. Ophthalmol. Vis. Sci.
50
(1)
194
202
(
2009
).
44.
J.
Dunlop
,
M.
Bowlby
,
R.
Peri
,
D.
Vasilyev
, and
R.
Arias
,
Nat. Rev. Drug Discovery
7
(
4
),
358
368
(
2008
).
45.
J. A.
Filosa
,
X.
Yao
, and
G.
Rath
,
J. Cardiovasc. Pharmacol.
61
(
2
),
113
119
(
2013
).
46.
E. A.
Lumpkin
and
M. J.
Caterina
,
Nature
445
(
7130
),
858
865
(
2007
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4893272 for time lapse images of BAECs at 10 and 100 μl min−1, single cell profile of BAECs under a shear stress of 20 dyn cm−2, variations of pressure and shear stress along the channel at a flow rate of 10 μl min−1 obtained by numerical simulations, quantitative analysis of shear stress induced calcium signalling in the diverging and converging regions of the channel, and shear stress potentiates the BAECs response to GSK1016790A.

Supplementary Material

You do not currently have access to this content.