This study suggests a new erythrocyte sedimentation rate (ESR) measurement method for the biophysical assessment of blood by using a microfluidic device. For an effective ESR measurement, a disposable syringe filled with blood is turned upside down and aligned at 180° with respect to gravitational direction. When the blood sample is delivered into the microfluidic device from the top position of the syringe, the hematocrit of blood flowing in the microfluidic channel decreases because the red blood cell-depleted region is increased from the top region of the syringe. The variation of hematocrit is evaluated by consecutively capturing images and conducting digital image processing technique for 10 min. The dynamic variation of ESR is quantitatively evaluated using two representative parameters, namely, time constant (λ) and ESR-area (AESR). To check the performance of the proposed method, blood samples with various ESR values are prepared by adding different concentrations of dextran solution. λ and AESR are quantitatively evaluated by using the proposed method and a conventional method, respectively. The proposed method can be used to measure ESR with superior reliability, compared with the conventional method. The proposed method can also be used to quantify ESR of blood collected from malaria-infected mouse under in vivo condition. To indirectly compare with the results obtained by the proposed method, the viscosity and velocity of the blood are measured using the microfluidic device. As a result, the biophysical properties, including ESR and viscosity of blood, are significantly influenced by the parasitemia level. These experimental demonstrations support the notion that the proposed method is capable of effectively monitoring the biophysical properties of blood.

1.
Y. J.
Kang
,
E.
Yeom
, and
S.-J.
Lee
,
Anal. Chem.
85
,
10503
10511
(
2013
).
2.
D. S.
Long
,
M. L.
Smith
,
A. R.
Pries
,
K.
Ley
, and
E. R.
Damiano
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
10060
10065
(
2004
).
3.
G. A. M.
Pop
,
L. L. A.
Sisschops
,
B.
Iliev
,
P. C.
Struijk
,
J. G. v. d.
Heven
, and
C. W. E.
Hoedemaekers
,
Biosens. Bioelectron.
41
,
595
601
(
2013
).
4.
N.
Srivastava
,
R. D.
Davenport
, and
M. A.
Burns
,
Anal. Chem.
77
,
383
392
(
2005
).
5.
B.
Rosencranz
and
S. A.
Bogen
,
Am. J. Clin. Pathol.
125
,
S78
S86
(
2006
).
6.
Y. J.
Kang
,
E.
Yeom
, and
S.-J.
Lee
,
Biomicrofluidics
7
,
054111
(
2013
).
7.
Y. J.
Kang
and
S.-J.
Lee
,
Biomicrofluidics
7
,
054122
(
2013
).
8.
L.
Campo-Deano
,
R. P. A.
Dullens
,
D. G. A. L.
Aarts
,
F. T.
Pinho
, and
M. S. N.
Oliveira
,
Biomicrofluidics
7
,
034102
(
2013
).
9.
M.
Puig-de-Morales-Marinkovic
,
K. T.
Turner
,
J. P.
Butler
, and
J. J.
Fredberg
,
Am. J. Physiol.-Cell Physiol.
293
,
C597
C605
(
2007
).
10.
A. E.
Ekpenyong
,
G.
Whyte
,
K.
Chalut
,
S.
Pagliara
,
F.
Lautenschlager
,
C.
Fiddler
,
S.
Paschke
,
U. F.
Keyser
,
E. R.
Chilvers
, and
J.
Guck
,
Plos One
7
,
e45237
(
2012
).
11.
S.
Cha
,
T.
Shin
,
S. S.
Lee
,
W.
Shim
,
G.
Lee
,
S. J.
Lee
,
Y.
Kim
, and
J. M.
Kim
,
Anal. Chem.
84
,
10471
10477
(
2012
).
12.
E.
Walitza
,
I.
Anadere
,
H.
Chmiel
, and
S.
Witte
,
Biorheology
25
,
209
217
(
1988
).
13.
H. W.
Hou
,
A. A. S.
Bhagat
,
A. G. L.
Chong
,
P.
Mao
,
K. S. W.
Tan
,
J.
Han
, and
C. T.
Lim
,
Lab Chip
10
,
2605
2613
(
2010
).
14.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D. D.
Carlo
,
Lab Chip
11
,
912
920
(
2011
).
15.
S. S.
Shevkoplyas
,
T.
Yoshida
,
S. C.
Gifford
, and
M. W.
Bitensky
,
Lab Chip
6
,
914
920
(
2006
).
16.
K.
Ariyoshi
,
T.
Maruyama
,
K.
Odashiro
,
K.
Askashi
,
T.
Fujino
, and
N.
Uyesaka
,
Cir. J.
74
,
129
136
(
2010
).
17.
A.
Chabanel
,
D.
Schachter
, and
S.
Chien
,
Hypertension
10
,
603
607
(
1987
).
18.
Y. J.
Kang
,
M. G.
Kim
,
K. H.
Son
,
C. H.
Lim
,
H. S.
Son
,
S. Y.
Yoon
,
H. S.
Kwon
, and
S.
Yang
,
Artif. Organs
34
,
E103
E109
(
2010
).
19.
J. J.
Bishop
,
P. R.
Nance
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
,
Am. J. Physiol. Heart Circ. Physiol.
280
,
H222
H236
(
2001
).
20.
J. M.
Sherwood
,
J.
Dusting
,
E.
Kaliviotis
, and
S.
Balabani
,
Biomicrofluidics
6
,
024119
(
2012
).
21.
J.
Zhang
,
P. C.
Johnson
, and
A. S.
Popel
,
Microvasc. Res.
77
,
265
272
(
2009
).
22.
M.
Brust
,
O.
Aouane
,
M.
Thiébaud
,
D.
Flormann
,
C.
Verdier
,
L.
Kaestner
,
M. W.
Laschke
,
H.
Selmi
,
A.
Benyoussef
,
T.
Podgorski
,
G.
Coupier
,
C.
Misbah
, and
C.
Wagner
,
Sci. Rep.
4
,
4348
(
2014
).
23.
M. B.
Andresdottir
,
N.
Sigfusson
,
H.
Sigvaldason
, and
V.
Gudnason
,
Am. J. Epidemiol.
158
,
844
851
(
2003
).
24.
C.-H.
Cha
,
C.-J.
Park
,
Y. J.
Cha
,
H. K.
Kim
,
D. H.
Kim
,
Honghoon
,
J. H.
Bae
,
J.-S.
Jung
,
S.
Jang
,
H.-S.
Chi
,
D. S.
Lee
, and
H.-I.
Cho
,
Am. J. Clin. Pathol.
131
,
189
194
(
2009
).
25.
L.
Bogar
and
P.
Tarsoly
,
Clin. Hemorheol. Microcirc.
34
,
439
445
(
2006
).
26.
N.
Thomas
,
Br. J. Hosp. Med.
58
,
521
523
(
1997
).
27.
T. L.
Fabry
,
Blood
70
,
1572
1576
(
1987
).
28.
A.
Westergren
,
Acta Medica Scandinavica
54
,
247
282
(
1921
).
29.
R.
Yip
and
P. R.
Dallman
,
Am. J. Clin. Nutri.
48
,
1295
1300
(
1988
).
30.
J.
Radermacher
,
S.
Ellis
, and
H.
Haller
,
Hypertension
39
,
699
703
(
2002
).
31.
L.
Dintenfass
and
C. D.
Forbes
,
Microvasc. Res.
9
,
107
118
(
1975
).
32.
E.
Knijff-Dutmer
,
W.
Drossaers-Bakker
,
A.
Verhoeven
,
G. v. d. S.
Veer
,
M.
Boers
,
S. v. d.
Linden
, and
M. v. d.
Laar
,
Ann. Rheum. Dis.
61
,
603
607
(
2002
).
33.
R. A.
Deyo
and
A. K.
Diehl
,
J. Gen. Intern. Med.
3
,
230
238
(
1988
).
34.
E.
Hannisdai
and
G.
Thorsen
,
J. Surg. Oncol.
37
,
109
112
(
1988
).
35.
E.
Piva
,
R.
Pajola
,
V.
Temporin
, and
M.
Plebani
,
Clin. Biochem.
40
,
491
495
(
2007
).
36.
K.
Cha
,
E. F.
Brown
, and
D. W.
Wilmore
,
Physiol. Meas.
15
,
499
(
1994
).
37.
T.-X.
Zhao
and
B.
Jacobson
,
Med. Biol. Eng. Comput.
35
,
181
185
(
1997
).
38.
J. N.
Mahlangu
and
M.
Davids
,
J. Clin. Lab. Anal.
22
,
346
352
(
2008
).
39.
A.
Larsson
and
L.-O.
Hansson
,
Ups. J. Med. Sci.
110
,
151
158
(
2005
).
40.
X.
Xu
,
L.
Yu
, and
Z.
Chen
,
Ann. Biomed. Eng.
38
,
3210
3217
(
2010
).
41.
S.
Shin
,
J. X.
Hou
, and
J.-S.
Suh
,
Korea-Aust. Rheol. J.
19
,
61
66
(
2007
).
42.
Y. J.
Kang
,
J.
Ryu
, and
S.-J.
Lee
,
Biomicrofluidics
7
,
044106
(
2013
).
43.
E.
Yeom
,
Y. J.
Kang
, and
S.-J.
Lee
,
Biomicrofluidics
8
,
034110
(
2014
).
44.
K.
Moll
,
I.
Ljungström
,
H.
Perlmann
,
A.
Scherf
, and
M.
Wahlgren
,
Methods in Malaria Research
, 5th ed. (
Malaria Research and Reference Reagent Resource Center
,
2008
), Vol. 1, p.
330
.
45.
S. S.
Savkare
and
S. P.
Narote
,
Int. J. Comp. Sci. Sec.
5
,
310
315
(
2011
).
46.
J. J.
Bishop
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
,
Biorheology
38
,
263
274
(
2001
).
47.
J. K.
Armstrong
,
R. B.
Wenby
,
H. J.
Meiselman
, and
T. C.
Fisher
,
Biophys. J.
87
,
4259
4270
(
2004
).
48.
Q.
Guo
,
S. J.
Reiling
,
P.
Rohrbach
, and
H.
Ma
,
Lab Chip
12
,
1143
1150
(
2012
).
49.
J. P.
Shelby
,
J.
White
,
K.
Ganesan
,
P. K.
Rathod
, and
D. T.
Chiu
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
14618
14622
(
2003
).
50.
D. A.
Fedosov
,
B.
Caswell
,
S.
Suresh
, and
G. E.
Karniadakis
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
35
39
(
2011
).
51.
T.
Wu
and
J. J.
Feng
,
Biomicrofluidics
7
,
044115
(
2013
).
52.
S.
Huang
,
A.
Undisz
,
M.
Diez-Silva
,
H.
Bow
,
M.
Dao
, and
J.
Han
,
Integr. Biol.
5
,
414
422
(
2013
).
53.
H. W.
Hou
,
H. Y.
Gan
,
A. A. S.
Bhagat
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
,
Biomicrofluidics
6
,
024115
(
2012
).
54.
E.
Du
,
S.
Ha
,
M.
Diez-Silva
,
M.
Dao
,
S.
Suresh
, and
A. P.
Chandrakasan
,
Lab Chip
13
,
3903
3909
(
2013
).
55.
A.
Adamo
,
A.
Sharei
,
L.
Adamo
,
B.
Lee
,
S.
Mao
, and
K. F.
Jensen
,
Anal. Chem.
84
,
6438
6443
(
2012
).
56.
C.
Raventos-Suarez
,
D. K.
Kaul
,
F.
Macaluso
, and
R. L.
Nagel
,
Proc. Natl. Acad. Sci. U.S.A.
82
,
3829
3833
(
1985
).
57.
D. A.
Fedosov
,
H.
Lei
,
B.
Caswell
,
S.
Suresh
, and
G. E.
Karniadakis
,
PLoS Comput. Biol.
7
,
e1002270
(
2011
).
You do not currently have access to this content.