We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNA polymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.

1.
S. E.
Halford
,
A. J.
Welsh
, and
M. D.
Szczelkun
, “
Enzyme-mediated DNA looping
,”
Annu. Rev. Biophys. Biomol. Struct.
33
,
1
24
(
2004
).
2.
R.
Schleif
, “
DNA looping
,”
Annu. Rev. Biochem.
61
,
199
223
(
1992
).
3.
W.
Su
,
S.
Jackson
,
R.
Tjian
, and
H.
Echols
, “
DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1
,”
Genes Dev.
5
,
820
826
(
1991
).
4.
Y.
Jiang
and
P. E.
Marszalek
, “
Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair
,”
EMBO J.
30
,
2881
2893
(
2011
).
5.
R. M.
Stansel
,
T.
de Lange
, and
J. D.
Griffith
, “
T-loop assembly in vitro involves binding of TRF2 near the 3' telomeric overhang
,”
EMBO J.
20
,
5532
5540
(
2001
).
6.
S.
Adhya
, “
Multipartite genetic control elements: Communication by DNA loop
,”
Annu. Rev. Genet.
23
,
227
250
(
1989
).
7.
S.
Courbet
,
S.
Gay
,
N.
Arnoult
,
G.
Wronka
,
M.
Anglana
,
O.
Brison
, and
M.
Debatisse
, “
Replication fork movement sets chromatin loop size and origin choice in mammalian cells
,”
Nature
455
,
557
560
(
2008
).
8.
E.
Lieberman-Aiden
 et al, “
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
,”
Science
326
,
289
293
(
2009
).
9.
N.
Naumova
,
M.
Imakaev
,
G.
Fudenberg
,
Y.
Zhan
,
B. R.
Lajoie
,
L. A.
Mirny
, and
J.
Dekker
, “
Organization of the mitotic chromosome
,”
Science
342
,
948
953
(
2013
).
10.
L.
Cui
,
I.
Murchland
,
K. E.
Shearwin
, and
I. B.
Dodd
, “
Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2922
2927
(
2013
).
11.
D.
Lewis
,
P.
Le
,
C.
Zurla
,
L.
Finzi
, and
S.
Adhya
, “
Multilevel autoregulation of λ repressor protein CI by DNA looping in vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
14807
14812
(
2011
).
12.
J.-F.
Allemand
,
S.
Cocco
,
N.
Douarche
, and
G.
Lia
, “
Loops in DNA: An overview of experimental and theoretical approaches
,”
Eur. Phys. J. E
19
,
293
302
(
2006
).
13.
E.
Alipour
and
J. F.
Marko
, “
Self-organization of domain structures by DNA-loop-extruding enzymes
,”
Nucl. Acids Res.
40
,
11202
11212
(
2012
).
14.
C. A.
Brackley
,
S.
Taylor
,
A.
Papantonis
,
P. R.
Cook
, and
D.
Marenduzzo
, “
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
E3605
E3611
(
2013
).
15.
L. S.
Shlyakhtenko
,
V. N.
Potaman
,
R. R.
Sinden
,
A. A.
Gall
, and
Y. L.
Lyubchenko
, “
Structure and dynamics of three-way DNA junctions: atomic force microscopy studies
,”
Nucl. Acids Res.
28
,
3472
3477
(
2000
).
16.
Z.
Katiliene
,
E.
Katilius
, and
N. W.
Woodbury
, “
Single molecule detection of DNA looping by NgoMIV restriction endonuclease
,”
Biophys. J.
84
,
4053
4061
(
2003
).
17.
S.
Chatterjee
,
Y. N.
Zhou
,
S.
Roy
, and
S.
Adhya
, “
Interaction of Gal repressor with inducer and operator: Induction of gal transcription from repressor-bound DNA
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
2957
2962
(
1997
).
18.
L.
Finzi
and
J.
Gelles
, “
Measurement of lactose repressor-mediated loop formation and breakdown in single DNA-molecules
,”
Science
267
,
378
380
(
1995
).
19.
C.
Manzo
,
C.
Zurla
,
D. D.
Dunlap
, and
L.
Finzi
, “
The effect of nonspecific binding of lambda repressor on DNA looping dynamics
,”
Biophys. J.
103
,
1753
1761
(
2012
).
20.
H.
Wang
,
I. B.
Dodd
,
D. D.
Dunlap
,
K. E.
Shearwin
, and
L.
Finzi
, “
Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor
,”
Nucl. Acids Res.
41
,
5746
5756
(
2013
).
21.
S. M.
Hamdan
,
J. J.
Loparo
,
M.
Takahashi
,
C. C.
Richardson
, and
A. M.
van Oijen
, “
Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis
,”
Nature
457
,
336
339
(
2009
).
22.
M.
Sun
,
T.
Nishino
, and
J. F.
Marko
, “
The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation
,”
Nucl. Acids Res.
41
,
6149
6160
(
2013
).
23.
Y.-F.
Chen
,
J. N.
Milstein
, and
J.-C.
Meiners
, “
Protein-mediated DNA loop formation and breakdown in a fluctuating environment
,”
Phys. Rev. Lett.
104
,
258103
(
2010
).
24.
Z.
Hensel
,
X.
Weng
,
A. C.
Lagda
, and
J.
Xiao
, “
Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells
,”
PLoS Biol.
11
,
e1001591
(
2013
).
25.
Y.
Doksani
,
J. Y.
Wu
,
T.
de Lange
, and
X.
Zhuang
, “
Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation,”
Cell
155
,
345
356
(
2013
).
26.
D.
Skoko
 et al, “
Barrier-to-autointegration factor (BAF) condenses DNA by looping
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
16610
16615
(
2009
).
27.
J. O.
Tegenfeldt
 et al, “
The dynamics of genomic-length DNA molecules in 100-nm channels
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
10979
10983
(
2004
).
28.
D. R.
Tree
,
Y.
Wang
, and
K. D.
Dorfman
, “
Extension of DNA in a nanochannel as a rod-to-coil transition
,”
Phys. Rev. Lett.
110
,
208103
(
2013
).
29.
W.
Reisner
,
J.
Beech
,
N.
Larsen
,
H.
Flyvbjerg
,
A.
Kristensen
, and
J. O.
Tegenfeldt
, “
Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment
,”
Phys. Rev. Lett.
99
,
058302
(
2007
).
30.
D. E.
Streng
,
S. F.
Lim
,
J.
Pan
,
A.
Karpusenka
, and
R.
Riehn
, “
Stretching chromatin through confinement
,”
Lab Chip
9
,
2772
2774
(
2009
).
31.
C.
Zhang
,
D.
Guttula
,
F.
Liu
,
P. P.
Malar
,
S. Y.
Ng
,
L.
Dai
,
P. S.
Doyle
,
J. A.
van Kan
, and
J. R. C.
van der Maarel
, “
Effect of H-NS on the elongation and compaction of single DNA molecules in a nanospace
,”
Soft Matter
9
,
9593
9601
(
2013
).
32.
K.
Frykholm
,
M.
Alizadehheidari
,
J.
Fritzsche
,
J.
Wigenius
,
M.
Modesti
,
F.
Persson
, and
F.
Westerlund
, “
Probing physical properties of a DNA-protein complex using nanofluidic channels
,”
Small
10
,
884
887
(
2014
).
33.
W.
Reisner
 et al, “
Statics and dynamics of single DNA molecules confined in nanochannels
,”
Phys. Rev. Lett.
94
,
196101
(
2005
).
34.
J. H.
Carpenter
,
A.
Karpusenko
,
J.
Pan
,
S. F.
Lim
, and
R.
Riehn
, “
Density fluctuations dispersion relationship for a polymer confined to a nanotube
,”
Appl. Phys. Lett.
98
,
253704
(
2011
).
35.
A.
Karpusenko
,
J. H.
Carpenter
,
C.
Zhou
,
S. F.
Lim
,
J.
Pan
, and
R.
Riehn
, “
Fluctuation modes of nanoconfined DNA
,”
J. Appl. Phys.
111
,
24701
247018
(
2012
).
36.
S. L.
Levy
,
J. T.
Mannion
,
J.
Cheng
,
C. H.
Reccius
, and
H. G.
Craighead
, “
Entropic unfolding of DNA molecules in nanofluidic channels
,”
Nano Lett.
8
,
3839
3844
(
2008
).
37.
R.
Metzler
,
W.
Reisner
,
R.
Riehn
,
R.
Austin
,
J. O.
Tegenfeldt
, and
I. M.
Sokolov
, “
Diffusion mechanisms of localised knots along a polymer
,”
Europhys. Lett.
76
,
696
702
(
2006
).
38.
D.
Shore
,
J.
Langowski
, and
R. L.
Baldwin
, “
DNA flexibility studied by covalent closure of short fragments into circles
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
4833
4837
(
1981
).
39.
D.
Shore
and
R. L.
Baldwin
, “
Energetics of DNA twisting. I. Relation between twist and cyclization probability
,”
J. Mol. Biol.
170
,
957
981
(
1983
).
40.
J.
Shimada
and
H.
Yamakawa
, “
Ring-closure probabilities for twisted wormlike chains. Application to DNA
,”
Macromolecules
17
,
689
698
(
1984
).
41.
W. H.
Taylor
and
P. J.
Hagerman
, “
Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. II. NaCl-dependence of DNA flexibility and helical repeat
,”
J. Mol. Biol.
212
,
363
376
(
1990
).
42.
I. R.
Lehman
, “
DNA ligase: structure, mechanism, and function
,”
Science
186
,
790
797
(
1974
).
43.
H.
Kuhn
and
M. D.
Frank-Kamenetskii
, “
Template-independent ligation of single-stranded DNA by T4 DNA ligase
,”
FEBS J.
272
,
5991
6000
(
2005
).
44.
S. V.
Nilsson
and
G.
Magnusson
, “
Sealing of gaps in duplex DNA by T4 DNA ligase
,”
Nucl. Acids Res.
10
,
1425
1437
(
1982
).
45.
D. F.
Bogenhagen
and
K. G.
Pinz
, “
The action of DNA ligase at abasic sites in DNA
,”
J. Biol. Chem.
273
,
7888
7893
(
1998
).
46.
R.
Rossi
,
A.
Montecucco
,
G.
Ciarrocchi
,
G.
Biamonti
, and
G.
Ciarochhi
, “
Functional characterization of the T4 DNA ligase: A new insight into the mechanism of action
,”
Nucl. Acids Res.
25
,
2106
2113
(
1997
).
47.
A. V.
Cherepanov
and
S.
de Vries
, “
Dynamic mechanism of nick recognition by DNA ligase
,”
Eur. J. Biochem.
269
,
5993
5999
(
2002
).
48.
T. E.
Cloutier
and
J.
Widom
, “
Spontaneous sharp bending of double-stranded DNA
,”
Mol. Cell
14
,
355
362
(
2004
).
49.
Q.
Du
,
C.
Smith
,
N.
Shiffeldrim
,
M.
Vologodskaia
, and
A.
Vologodskii
, “
Cyclization of short DNA fragments and bending fluctuations of the double helix
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
5397
5402
(
2005
).
50.
C.
Yuan
,
X. W.
Lou
,
E.
Rhoades
,
H.
Chen
, and
L. A.
Archer
, “
T4 DNA ligase is more than an effective trap of cyclized dsDNA
,”
Nucl. Acids Res.
35
,
5294
5302
(
2007
).
51.
P. J.
Hagerman
and
V. A.
Ramadevi
, “
Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. I. Computational analysis
,”
J. Mol. Biol.
212
,
351
362
(
1990
).
52.
A.
Rosa
,
N. B.
Becker
, and
R.
Everaers
, “
Looping probabilities in model interphase chromosomes
,”
Biophys. J.
98
,
2410
2419
(
2010
).
53.
P. H.
Von Hippel
and
O. G.
Berg
, “
Facilitated target location in biological systems
,”
J. Biol. Chem.
264
,
675
678
(
1989
).
54.
M.
Reuter
and
D. T. F.
Dryden
, “
The kinetics of YOYO-1 intercalation into single molecules of double-stranded DNA
,”
Biochem. Biophys. Res. Commun.
403
,
225
229
(
2010
).
55.
T. E.
Cloutier
and
J.
Widom
, “
DNA twisting flexibility and the formation of sharply looped protein-DNA complexes
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
3645
3650
(
2005
).
56.
R.
Riehn
,
W.
Reisner
,
J. O.
Tegenfeldt
,
Y. M.
Wang
,
C.-K.
Tung
,
S. F.
Lim
,
E. C.
Cox
,
J.
Sturm
, and
R. H.
Austin
, “
Nanochannels for genomic DNA analysis: The long and short of It
,” in
Integrated Biochips for DNA Analysis
, edited by
R. H.
Liu
and
A. P.
Lee
(
Landes Bioscience
,
Austin, Texas
,
2007
), pp.
151
186
.
57.
R.
Riehn
,
M. C.
Lu
,
Y. M.
Wang
,
S. F.
Lim
,
E. C.
Cox
, and
R. H.
Austin
, “
Restriction mapping in nanofluidic devices
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10012
10016
(
2005
).
58.
P.
Kaur
 et al, “
Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging
,”
Biophys. J.
100
,
243
250
(
2011
).
59.
L.
Dai
,
S. Y.
Ng
,
P. S.
Doyle
, and
J. R. C.
van der Maarel
, “
Conformation model of back-folding and looping of a single DNA molecule confined inside a nanochannel
,”
ACS Macro Lett.
1
,
1046
1050
(
2012
).
60.
F.
Persson
,
P.
Utko
,
W.
Reisner
,
N. B.
Larsen
, and
A.
Kristensen
, “
Confinement spectroscopy: probing single DNA molecules with tapered nanochannels
,”
Nano Lett.
9
,
1382
1385
(
2009
).
61.
P. G.
De Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
62.
D. W.
Schaefer
,
J. F.
Joanny
, and
P.
Pincus
, “
Dynamics of semiflexible polymers in solution
,”
Macromolecules
13
,
1280
1289
(
1980
).
63.
Y.
Wang
,
D. R.
Tree
, and
K. D.
Dorfman
, “
Simulation of DNA extension in nanochannels
,”
Macromolecules
44
,
6594
6604
(
2011
).
64.
F.
Persson
,
F.
Westerlund
,
J. O.
Tegenfeldt
, and
A.
Kristensen
, “
Local conformation of confined DNA studied using emission polarization anisotropy
,”
Small
5
,
190
193
(
2009
).
65.
C.
Zhang
,
P. G.
Shao
,
J. A.
van Kan
, and
J. R. C.
van der Maarel
, “
Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
16651
16656
(
2009
).
66.
J.
Jones
,
J.
van der Maarel
, and
P.
Doyle
, “
Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent
,”
Nano Lett.
11
,
5047
5053
(
2011
).
67.
C.
Zhang
,
Z.
Gong
,
D.
Guttula
,
P. P.
Malar
,
J. A.
van Kan
,
P. S.
Doyle
, and
J. R. C.
van der Maarel
, “
Nanofluidic compaction of DNA by like-charged protein
,”
J. Phys. Chem. B
116
,
3031
3036
(
2012
).
68.
S.
Jun
,
D.
Thirumalai
, and
B.-Y.
Ha
, “
Compression and stretching of a self-avoiding chain in cylindrical nanopores
,”
Phys. Rev. Lett.
101
,
138101
1
138101
4
(
2008
).
69.
P.
Cifra
, “
Weak-to-strong confinement transition of semi-flexible macromolecules in slit and in channel
,”
J. Chem. Phys.
136
,
024902
(
2012
).
70.
P.
Cifra
and
T.
Bleha
, “
Detection of chain backfolding in simulation of DNA in nanofluidic channels
,”
Soft Matter
8
,
9022
(
2012
).
71.
D.
Račko
and
P.
Cifra
, “
Segregation of semiflexible macromolecules in nanochannel
,”
J. Chem. Phys.
138
,
184904
(
2013
).
72.
Y.-L.
Chen
, “
Electro-entropic excluded volume effects on DNA looping and relaxation in nanochannels
,”
Biomicrofluidics
7
,
54119
(
2013
).
73.
B.
Akerman
and
E.
Tuite
, “
Single- and double-strand photocleavage of DNA by YO, YOYO, and TOTO
,”
Nucl. Acids Res.
24
,
1080
1090
(
1996
).
74.
S.
Gurrieri
,
K. S.
Wells
,
I. D.
Johnson
, and
C.
Bustamante
, “
Direct visualization of individual DNA molecules by fluorescence microscopy: characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO
,”
Anal. Biochem.
249
,
44
53
(
1997
).
75.
C. H.
Reccius
,
S. M.
Stavis
,
J. T.
Mannion
,
L. P.
Walker
, and
H. G.
Craighead
, “
Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels
,”
Biophys. J.
95
,
273
286
(
2008
).
You do not currently have access to this content.